LASER TORCH BASED VOICE TRANSMITTER AND RECEIVER full report
#9
This article is presented by:
DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS
ENGINEERING
KONERU LAKSHMAIAH COLLEGE OF ENGINEERING
Ch.Ravi Kishore


ABSTRACT
Using this circuit you can communicate with your neighbors wirelessly. Instead of RF signals, light from a laser torch is used as the carrier in the circuit. The laser torch can transmit light up to a distance of about 500 meters. The phototransistor of the receiver must be accurately oriented towards the laser beam from the torch. If there is any obstruction in the path of the laser beam, no sound will be heard from the receiver. The transmitter circuit (Fig. 1) comprises condenser microphone transistor amplifier BC548 (T1) followed by an opamp stage built around μA741 (IC1). The gain of the op-amp can be controlled with the help of 1-mega-ohm pot meter VR1. The AF output from IC1 is coupled to the base of transistor BD139 (T2), which, in turn, modulates the laser beam. The transmitter uses 9V power supply. However, the 3-volt laser torch (after removal of its battery) can be directly connected to the circuit—with the body of the torch connected to the emitter of BD139 and the spring-loaded lead protruding from inside the torch to circuit ground. The receiver circuit (Fig. 2) uses an NPN phototransistor as the light sensor that is followed by a two-stage transistor preamplifier and LM386-based audio power amplifier. The receiver does not need any complicated alignment. Just keep the phototransistor oriented towards the remote transmitter’s laser point and adjust the volume control for a clear sound. To avoid 50Hz hum noise in the speaker, keep the phototransistor away from AC light sources such as bulbs.
GENERAL
Laser communications systems are wireless connections through the atmosphere. They work similarly to fiber optic links, except the beam is transmitted through free space. While the transmitter and receiver must require line-of-sight conditions, they have the benefit of eliminating the need for broadcast rights and buried cables. Laser communications systems can be easily deployed since they are inexpensive, small, low power and do not require any radio interference studies. The carrier used for the transmission signal is typically generated by a laser diode. Two parallel beams are needed, one for transmission and one for reception. Due to budget restrictions, the system implemented in this project is only one way.
Laser communications have been a hot topic lately, as solutions for how to satisfy ever increasing bandwidth needs are in high demand. Some have suggested that bandwidth could be distributed in neighborhoods by putting laser communication systems on top of homes and pointing them towards a common transceiver with a fast page link to the Internet. With possible transmit speeds of up to a gigabit per second, this is an exciting area. Other applications for this technology include temporary connectivity needs (e.g. sporting events, disaster scenes, or conventions), or space based communications.
Using this circuit you can communicate with your neighbors wirelessly. Instead of RF signals, light from a laser torch is used as the carrier in the circuit. The laser torch can transmit light up to a distance of about 500 meters. The phototransistor of the receiver must be accurately oriented towards the laser beam from the torch. If there is any obstruction in the path of the laser beam, no sound will be heard from the receiver. The transmitter circuit (Fig. 1) comprises condenser microphone transistor amplifier BC548 (T1) followed by an opamp stage built around μA741 (IC1). The gain of the op-amp can be controlled with the help of 1-mega-ohm pot meter VR1. The AF output from IC1 is coupled to the base of transistor BD139 (T2), which, in turn, modulates the laser beam. The transmitter uses 9V power supply. However, the 3-volt laser torch (after removal of its battery) can be directly connected to the circuit—with the body of the torch connected to the emitter of BD139 and the spring-loaded lead protruding from inside the torch to circuit ground. The receiver circuit (Fig. 2) uses an NPN phototransistor as the light sensor that is followed by a two-stage transistor preamplifier and LM386-based audio power amplifier. The receiver does not need any complicated alignment. Just keep the phototransistor oriented towards the remote transmitter’s laser point and adjust the volume control for a clear sound. To avoid 50Hz hum noise in the speaker, keep the phototransistor away from AC light sources such as bulbs.Sad


Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Tagged Pages: transmitrer and reciver using laser tourch, 2019 benjam no email leads mail,
Popular Searches: laser torch based voice transmitter and receiver abstract pdf, ppt of automatic emergency torch, cxa1619bs and tba810 based fm receiver, seminar report on fm superheterodyne receiver, ppt on colour tv transmitter and receiver, am transmitter and receiver mini project, optoelectronics phototransistor,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
RE: LASER TORCH BASED VOICE TRANSMITTER AND RECEIVER full report - by projectsofme - 08-10-2010, 04:01 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  FINGER PRINT BASED ELECTRONIC VOTING MACHINE full report project topics 60 50,955 11-05-2017, 10:43 AM
Last Post: jaseela123d
  Voice Based Automated Transport Enquiry System seminar class 2 3,190 05-10-2016, 09:34 AM
Last Post: ijasti
  GSM based Control Panel for Agricultural and Domestic Water Pumps seminar addict 4 24,677 08-09-2016, 10:58 AM
Last Post: ijasti
  DESIGN AND IMPLEMENTATION OF GOLAY ENCODER AND DECODER computer science crazy 2 23,666 26-08-2016, 03:46 PM
Last Post: anasek
  AUTOMATIC BUS STATION ANNOUNCEMENT SYSTEM full report project report tiger 4 10,924 13-08-2016, 11:16 AM
Last Post: jaseela123d
  MICROCONTROLLER BASED DAM GATE CONTROL SYSTEM full report seminar class 13 17,311 19-06-2016, 07:53 PM
Last Post: Saianjana
  METAL DETECTOR full report project report tiger 14 23,861 12-03-2016, 01:51 PM
Last Post: seminar report asees
  Solar power plant full report seminar class 2 3,370 11-11-2015, 01:49 PM
Last Post: seminar report asees
  MICROCONTROLLER BASED AUTOMATIC RAILWAY GATE CONTROL full report project topics 49 58,040 10-09-2015, 03:18 PM
Last Post: seminar report asees
  RELAY CO-ORDINATION full report project report tiger 2 4,424 24-02-2015, 10:18 AM
Last Post: seminar report asees

Forum Jump: