Optical Computer Full Seminar Report Download
#1

ABSTRACT
Computers have become an indispensable part of life. We need computers everywhere, be it for work, research or in any such field. As the use of computers in our day-to-day life increases, the computing resources that we need also go up. For companies like Google and Microsoft, harnessing the resources as and when they need it is not a problem. But when it comes to smaller enterprises, affordability becomes a huge factor. With the huge infrastructure come problems like machines failure, hard drive crashes, software bugs, etc. This might be a big headache for such a community. Optical Computing offers a solution to this situation.


An Optical Computer is a hypothetical device that uses visible light or infrared beams, rather than electric current, to perform digital computations. An electric current flows at only about 10 percent of speed of light. By applying some of the advantages of visible and/or IR networks at the device and component scale, a computer can be developed that can perform operations very much times faster than a conventional electronic computer.

Optical computing describes a new technological approach for constructing computerâ„¢s processors and other components. Instead of the current approach of electrically transmitting data along tiny wires etched onto silicon. Optical computing employs a technology called silicon photonics that uses laser light instead. This use of optical lasers overcomes the constraints associated with heat dissipation in todayâ„¢s components and allows much more information to be stored and transmitted in the same amount of space.

Optical computing means performing computations, operations, storage and transmission of data using light. Optical technology promises massive upgrades in the efficiency and speed of computers, as well as significant shrinkage in their size and cost. An optical desktop computer is capable of processing data up to 1,00,000 times faster than current models.
Reply
#2
[attachment=1012]
1.0 Introduction
Computers have enhanced human life to a great extent.The goal of improving on computer speed has resulted in the development of the Very Large Scale Integration (VLSI) technology with smaller device dimensions and greater complexity. ¬¬¬
VLSI technology has revolutionized the electronics industry and additionally, our daily lives demand solutions to increasingly sophisticated and complex problems, which requires more speed and better performance of computers.
For these reasons, it is unfortunate that VLSI technology is approaching its fundamental limits in the sub-micron miniaturization process. It is now possible to fit up to 300 million transistors on a single silicon chip. As per the Moore™Â¬s law it is also estimated that the number of transistor switches that can be put onto a chip doubles every 18 months. Further miniaturization of lithography introduces several problems such as dielectric breakdown, hot carriers, and short channel effects. All of these factors combine to seriously degrade device reliability. Even if developing technology succeeded in temporarily overcoming these physical problems, we will continue to face them as long as increasing demands for higher integration continues. Therefore, a dramatic solution to the problem is needed, and unless we gear our thoughts toward a totally different pathway, we will not be able to further improve our computer performance for the future.
Optical interconnections and optical integrated circuits will provide a way out of these limitations to computational speed and complexity inherent in conventional electronics. Optical computers will use photons traveling on optical fibers or thin films instead of electrons to perform the appropriate functions. In the optical computer of the future, electronic circuits and wires will be replaced by a few optical fibers and films, making the systems more efficient with no interference, more cost effective, lighter and more compact. Optical components would not need to have insulators as those needed between electronic components because they donâ„¢t experience cross talk. Indeed, multiple frequencies (or different colors) of light can travel through optical components without interfacing with each others, allowing photonic devices to process multiple streams of data simultaneously.
1.1 Why Use Optics for Computing
Optical interconnections and optical integrated circuits have several advantageous over their electronic counterparts. They are immune to electromagnetic interference, and free from electrical short circuits. They have low-loss transmission and provide large bandwidth; i.e. multiplexing capability, capable of communicating several channels in parallel without interference. They are capable of propagating signals within the same or adjacent fibers with essentially no interference or cross-talk. They are compact, lightweight, and inexpensive to manufacture, and more facile with stored information than magnetic materials.
Most of the components that are currently very much in demand are electro-optical (EO). Such hybrid components are limited by the speed of their electronic parts. All optical components will have the advantage of speed over EO components. Unfortunately, there is an absence of known efficient nonlinear optical materials that can respond at low power levels. Most all optical components require a high level of laser power to function as required.
Optics has a higher bandwidth capacity over electronics, which enables more information to be carried and data to be processed arises because electronic communication along wires requires charging of a capacitor that depends on length. In contrast, optical signals in optical fibers, optical integrated circuits, and free space do not have to charge a capacitor and are therefore faster.
Another advantage of optical methods over electronic ones for computing is that optical data processing can be done much easier and less expensive in parallel than can be done in electronics. Parallelism is the capability of the system to execute more than one operation simultaneously. Electronic computer architecture is, in general, sequential, where the instructions are implemented in sequence. This implies that parallelism with electronics is difficult to construct. Using a simple optical design, an array of pixels can be transferred simultaneously in parallel from one point to another. To appreciate the difference between both optical parallelism and electronic one can think of an imaging system of as many as 1000x1000 independent points per mm2 in the object plane which are connected optically by a lens to a corresponding 1000x1000 points per mm2 in the image plane. For this to be accomplished electrically, a million nonintersecting and properly isolated conduction channels per mm2 would be required. Parallelism, therefore, when associated with fast switching speeds, would result in staggering computational speeds.
Assume, for example, there are only 100 million gates on a chip (optical integration is still in its infancy compared to electronics). Further, conservatively assume that each gate operates with a switching time of only 1 nanosecond (organic optical switches can switch at sub-picosecond rates compared to maximum picosecond switching times for electronic switching). Such a system could perform more than 1017 bit operations per second. Compare this to the gigabits (109) or terabits (1012) per second rates which electronics are either currently limited to, or hoping to achieve. In other words, a computation that might require one hundred thousand hours (more than 11 years) of a conventional computer could require less than one hour by an optical one.
Another advantage of light results because photons are uncharged and do not interact with one another as readily as electrons. Consequently, light beams may pass through one another in full-duplex operation, for example without distorting the information carried. In the case of electronics, loops usually generate noise voltage spikes whenever the electromagnetic fields through the loop changes. Further, high frequency or fast switching pulses will cause interference in neighboring wires. Signals in adjacent fibers or in optical integrated channels do not affect one another nor do they pick up noise due to loops. Finally, optical materials possess superior storage density and accessibility over magnetic materials.
Obviously, the field of optical computing is progressing rapidly and shows many dramatic opportunities for overcoming the limitations described earlier for current electronic computers. The process is already underway whereby optical devices have been incorporated into many computing systems. Laser diodes as sources of coherent light have dropped rapidly in price due to mass production. Also, optical CD-ROM discs have been very common or even outdated in home and office computers
Reply
#3
Its alright.I made one.I will post it in a new thread after a few days.Thank you for your reply^_^
Reply
#4
[attachment=490]
The file zip compression used in the above seminar file is with 7-Zip. You can download 7-Zip application from the below site and extract the contents easily. Smile

http://7-zip.org


for more about seminar see
http://en.wikipediawiki/Photonic_computing
Reply
#5
[attachment=1712]
submitted by:
David Eddings

Introduction

Computers have enhanced human life to a great extent. The speed of conventional computers is achieved by miniaturizing electronic components to a very small micron-size scale so that those electrons need to travel only very short distances within a very short time. The goal of improving on computer speed has resulted in the development of the Very Large Scale Integration (VLSI) technology with smaller device dimensions and greater complexity.
VLSI technology has revolutionized the electronics industry and established the 20th century as the computer age, increasing usage of the Internet demands better accommodation of a 10 to 15 percent per month growth rate. Additionally, our daily lives demand solutions to increasingly sophisticated and complex problems, which requires more speed and better performance of computers.
For these reasons, it is unfortunate that VLSI technology is approaching its fundamental limits in the sub-micron miniaturization process. It is now possible to fit up to 300 million transistors on a single silicon chip. As per the Moore™Â¬s law it is also estimated that the number of transistor switches that can be put onto a chip doubles every 18 months. Further miniaturization of lithography introduces several problems such as dielectric breakdown, hot carriers, and short channel effects. All of these factors combine to seriously degrade device reliability. Even if developing technology succeeded in temporarily overcoming these physical problems, we will continue to face them as long as increasing demands for higher integration continues. Therefore, a dramatic solution to the problem is needed, and unless we gear our thoughts toward a totally different pathway, we will not be able to further improve our computer performance for the future.
Optical interconnections and optical integrated circuits will provide a way out of these limitations to computational speed and complexity inherent in conventional electronics. Optical computers will use photons traveling on optical fibers or thin films instead of electrons to perform the appropriate functions. In the optical computer of the future, electronic circuits and wires will be replaced by a few optical fibers and films, making the systems more efficient with no interference, more cost effective, lighter and more compact. Optical components would not need to have insulators as those needed between electronic components because they donâ„¢t experience cross talk. Indeed, multiple frequencies (or different colors) of light can travel through optical components without interfacing with each others, allowing photonic devices to process multiple streams of data simultaneously.
Reply
#6
[attachment=1956]

1.SYNOPSIS
Optical computing means performing computations, operations, storage and transmission of data using only light. It uses the photons in visible light or infrared(IR) beams, rather than electric current, to perform digital computations. Optical computers, theoretically, transmit data using light from laser or infrared beams as opposed to electronic currents. Instead of silicon chips optical computer uses organic polymers like phthalocyanine and polydiacetylene. Optical technology promises massive upgrades in the efficiency and speed of computers, as well as significant shrinkage in their size and cost. Optical computer would be extremely fast because they wouldn't need physical wires or cables to transmit data.An optical desktop computer is capable of processing data up to 1,00,000 times faster than current models.
2. INTRODUCTION
Computers have enhanced human life to a great extent. The speed of conventional computers is achieved by miniaturizing electronic components to a very small micron-size scale so that those electrons need to travel only very short distances within a very short time. The goal of improving on computer speed has resulted in the development of the Very Large Scale Integration (VLSI) technology with smaller device dimensions and greater complexity. Last year, the smallest-todate dimensions of VLSI reached 0.08 urn by researchers at Lucent Technology. Whereas VLSI technology has revolutionized the electronics industry and established the 20th century as the computer age, increasing usage of the Internet demands better accommodation of a 10 to 15 percent per month growth rate. Additionally, our daily lives demand solutions to increasingly sophisticated and complex problems, which requires more speed and better performance of computers.
For these reasons, it is unfortunate that VLSI technology is approaching its fundamental limits in the sub-micron miniaturization process. It is now possible to fit up to 300 million transistors on a single silicon chip. It is also estimated that the number of transistor switches that can be put onto a chip doubles every 18 months. Further miniaturization of lithography introduces several problems such as dielectric breakdown, hot carriers, and short channel effects. All of these factors combine to seriously degrade device reliability. Even if developing technology succeeded in temporarily overcoming these physical problems, we will continue to face them as long as increasing demands for higher integration continues. Therefore, a dramatic solution to the problem is needed, and unless we gear our thoughts toward a totally different pathway, we will not be able to further improve our computer performance for the future.
Optical interconnections and optical integrated circuits will provide a way out of these limitations to computational speed and complexity inherent in
conventional electronics. Optical computers will use photons traveling on optical fibers or thin films instead of electrons to perform the appropriate functions. In the optical computer of the future, electronic circuits and wires will be replaced by a few optical fibers and films, making the systems more efficient with no interference, more cost effective, lighter and more compact. Optical components would not need to have insulators as those needed between electronic components because they don't experience cross talk. Indeed, multiple frequencies (or different colors) of light can travel through optical components without interfacing with each others, allowing photonic devices to process multiple streams of data simultaneously.
3. NEED FOR OPTICAL COMPUTING
Optical interconnections and optical integrated circuits have several advantageous over their electronic counterparts. They are immune to electromagnetic interference, and free from electrical short circuits. They have low-loss transmission and provide large bandwidth; i.e. multiplexing capability, capable of communicating several channels in parallel without interference. They are capable of propagating signals within the same or adjacent fibers with essentially no interference or cross-talk. They are compact, lightweight, and inexpensive to manufacture, and more facile with stored information than magnetic materials.
We are in an era of daily explosions in the development of optics and optical components for computing and other applications. The business of photonics is booming in industry and universities worldwide. It is estimated that photonic device sales worldwide will range between $12 billion and $100 billion in 1999 due to an ever-increasing demand for data traffic. According to KMI corp., data traffic is growing worldwide at a rate of 100% per year, while, the Phillips Group in London estimates that the U.S. data traffic will increase by 300% annually. KMI corp. also estimates that sales of dense-wavelength division multiplexing equipment will increase by more than quadruple its growth ;n the next five years, i.e. from $2.2 billion worldwide in 1998 to $9.4 billion 2D04. In fact, Future Communication Inc., London, announced this year to -pgrade their communication system accordingly. The company's goal is to use .va.elength division multiplexing at 10 Gb/s/channel to transmit at a total rate of -ore than 1000 Tb/s.
Most of the components that are currently very much in demand are eectro-optical (EO). Such hybrid components are limited by the speed of their electronic parts. All-optical components will have the advantage of speed over EO components. Unfortunately, there is an absence of known efficient nonlinear optical materials that can respond at low power levels. Most alloptical components require a high level of laser power to function as required. A group of researchers from the university of southern California, jointly with a team from the university of California Los Anglos, have developed an organic polymer with a switching frequency of 60 GHz. This is three times faster than the current industry standard, lithium niobate crystal-based devices. The California team has been working to incorporate their material into a working prototype. Development of such a device could revolutionize the information superhighway and speed data processing for optical computing. Another group at Brown University and the IBM Almaden Research Center (San Jose, CA) have used ultrafast laser pulses to build ultrafast datastorage devices. This group was able to achieve ultrafast switching down to 100ps. Their results are almost ten times faster than currently available "speed limits". Optoelectronic technologies for optical computers and communication hold promise for transmitting data as short as the space between computer chips or as long as the orbital distance between satellites. A European collaborative effort demonstrated a high-speed optical data input and output in free-space between IC chips in computers at a rate of more than 1 Tb/s. Astro Terra, in collaboration with Jet Propulsion Laboratory (Pasadena, CA) has built a 32-channel 1-Ggb/s earth-to-satellite page link with a 2000 km range. Many more active devices in development, and some are likely to become crucial components in future optical computer and networks.
The race is on with foreign competitors. NEC (Tokyo, Japan) have developed a method for interconnecting circuit boards optically using Vertical Cavity Surface Emitting Laser arrays (VCSEL). Researchers at Osaka City University (Osaka, Japan) reported on a method for automatic alignment of a set of optical beams in space with a set of optical fibers. As of last year, researchers at NTT (Tokyo, Japan) have designed an optical back plane with free-space optical interconnects using tunable beam deflectors and a mirror. The project had achieved 1000 interconnections per printed-circuit board, with throughput ranging from 1 to 10 Tb/s.
Optics has a higher bandwidth capacity over electronics, which enables more information to be carried and data to be processed arises because electronic communication along wires requires charging of a capacitor that depends on length. In contrast, optical signals in optical fibers, optical integrated circuits, and free space do not have to charge a capacitor and are therefore faster.
Another advantage of optical methods over electronic ones for computing is that optical data processing can be done much easier and less expensive in parallel than can be done in electronics. Parallelism is the capability of the system to execute more than one operation simultaneously. Electronic computer architecture is, in general, sequential, where the instructions are implemented in sequence. This implies that parallelism with electronics is difficult to construct. Parallelism first appeared in Cray super computers in the early 1980's. Two processors were used in conjunction with the computer memory to achieve parallelism and to enhance the speed to more than 10 Gb/ s. It was later realized that more processors were not necessary to increase computational speed, but could be in fact detrimental. This is because as more processors are used, there is more time lost in communication. On the other hand, using a simple optical design, an array of pixels can be transferred simultaneously in parallel from one point to another. To appreciate the difference between both optical parallelism and electronic one can think of an Tiaging system of as many as 1000x1000 independent points per mm2 in the crsject plane which are connected optically by a lens to a corresponding 1000x "000 points per mm2 in the image plane. For this to be accomplished = ectrically, a million nonintersecting and properly isolated conduction channels zer mm2 would be required.
Parallelism, therefore, when associated with fast switching speeds, .vDuJd result in staggering computational speeds. Assume, for example, there are only 100 million gates on a chip, much less than what was mentioned earlier .¦optical integration is still in its infancy compared to electronics). Further,
Reply
#7

hai,i
i need full seminar report on optical computer in computer science.pls send me the report .
Reply
#8
Hi
i m student of final year computer and i want to give seminar on optical seminar so plz send me optical computer full seminar report.
Reply
#9
Rainbow 
SmileSmileSmileSmileSmileSmileSmileSmileSmileSmile
Reply
#10
hey friend it's a new idea but i want full information site for this Rolleyes
Reply
#11
Hi,
this thread has a report posted in it.
These links have further information:
http://ias.acresonance/June2003/pdf/June2003p56-71.pdf
http://ece.lehigh.edu/~amcaulay/publicat...tletoc.pdf
Reply
#12
please give me the full seminar report on opticle computer.
Thank u.Smile
Reply
#13
pls send me full seminar report on optical computing...
Reply
#14
abchdhfhsdjgfvjrsajmcfeijrashnvreunvrvmureonugvoecgvnrejngvrntgitvsjritvmnrgvireutgiu
Reply
#15
plz snd the report to traisymaliakkal[at]yahoo.co.in
Reply
#16
[attachment=4542]

INTRODUCTION

Uses light instead of electricity
Uses photons in visible light or infrared beams instead of electric current.
Visible light or IR beams, unlike electric current,pass through each other with out interacting
A computer might someday be developed that can perform 10 or more times greater than an electronic computer
Rapid growth of the Internet
Network speeds currently limited by electronic circuits
Terabit speeds are required
Traditional silicon circuits have a physical limit


Reply
#17
[attachment=4823]
This article is presented by:
Sudhanshu Shekhar
B.Tech. IV Year
GYAN VIHAR
School of Engineering & Technology

OPTICAL COMPUTERS


INTRODUCTION

Optical computing describes a new technological approach for constructing computer’s processors and other components.
An Optical Computer is a hypothetical device that uses visible light or infrared beams, rather than electric current, to perform digital computations.

COMPONENTS OF OPTICAL COMPUTER

Hard Disk
CPU
Cache Memory
Main Memory
Power Supply
Screen


Optical Components for Computing

VCSEL

SLM

WDM

OPTICAL MEMORY

Reply
#18
[attachment=4851]
ABSTRACT



An optical computer (also called a photonic computer) is a device that uses the photons of visible light or infrared (IR) beams, rather than electric current, to perform digital computations. An electric current creates heat in computer systems. As the processing speed increases, so does the amount of electricity required; this extra heat is extremely damaging to the hardware. Light, however, creates insignificant amounts of heat, regardless of how much is used. Thus, the development of more powerful processing systems becomes possible.
An optical desktop computer could be capable of processing data up to 100,000 times faster than current models because multiple operations can be performed simultaneously.
On October 4, 1993, the eminent Soviet physicist Prof. U. Kh. Kopvillem would have been 70 years old. However, he died prematurely on September 24, 1991.
His research was the foundation of several areas of nonlinear optics, quantum acoustics, and radioacoustics. The breadth of the subject matter of this issue, ranging from studies on the role of photon modes in high-temperature superconductivity to the propagation of ullxashort pulses (of the order of one period), only partially reflects the wide specmam of the scientific interests of U. Kh. Kopvillem.
Optical computing where the processing of electrical energy is replaced by light quanta is very attractive for future technologies. The replacement of wires by optical pathways is of special interest because light can cross without interference and thus, the complex wiring of modern computers may be appreciably simplified. Moreover, optical computers can operate at very high rates because there are not the problems of electrical computers such as inductivities of wires and loading of parasitic capacitors.
AN OVERVIEW OF OPTICAL COMPUTING

Computers have become an indispensable part of life. We need computers everywhere, be it for work, research or in any such field. As the use of computers in our day-to-day life increases, the computing resources that we need also go up. For companies like Google and Microsoft, harnessing the resources as and when they need it is not a problem. But when it comes to smaller enterprises, affordability becomes a huge factor. With the huge infrastructure come problems like machines failure, hard drive crashes, software bugs, etc. This might be a big headache for such a community. Optical Computing offers a solution to this situation.
An Optical Computer is a hypothetical device that uses visible light or infrared beams, rather than electric current, to perform digital computations. An electric current flows at only about 10 percent of speed of light. By applying some of the advantages of visible and/or IR networks at the device and component scale, a computer can be developed that can perform operations very much times faster than a conventional electronic computer.

Optical computing describes a new technological approach for constructing computer’s processors and other components. Instead of the current approach of electrically transmitting data along tiny wires etched onto silicon. Optical computing employs a technology called silicon photonics that uses laser light instead.

This use of optical lasers overcomes the constraints associated with heat dissipation in today’s components and allows much more information to be stored and transmitted in the same amount of space. Optical computing means performing computations, operations, storage and transmission of data using light. Optical technology promises massive upgrades in the efficiency and speed of computers, as well as significant shrinkage in their size and cost. An optical desktop computer is capable of processing data up to 1,00,000 times faster than current models.

An optical computer (also called a photonic computer) is a device that uses the photons of visible light or infrared (IR) beams, rather than electric current, to perform digital computations. An electric current creates heat in computer systems. As the processing speed increases, so does the amount of electricity required; this extra heat is extremely damaging to the hardware.


Reply
#19




digital computers

A computer must have some type of the following: Central Processing Unit, Memory, Input Unit, Output Unit.
Input/Output
In many instances, an input and an output unit are combined to service some particular device or an add-on to the computer. In these cases, the combined unit is referred to as an Input/Output (I/O) unit.
CPU
The CPU section consists of two major sub-sections: an arithmetic logic unit (ALU) and a control unit. The ALU is the section of the computer where the actual math and logic operations are performed under the direction of the control unit.
PC Components
A typical personal computer system is modular by design. It is called a system because it includes all the components required to have a functional computer:
Input devices — keyboard and mouse
Computer — system unit
Output devices — a CRT monitor and a printer
System Unit
The system unit is the main portion of the microcomputer system and is the basis of any PC system arrangement. The components surrounding it vary from system to system depending upon what particular functions the system is supposed to serve.
Internal Components
The components inside the system unit can be divided into four distinct sub-units: a power supply, the disk drives, the system board, and the options adapter cards.
Power Supply Unit
A typical system unit contains a single power supply unit that converts commercial power into the various levels required by the different units in the system.
Drives
The number and types of disk drives in the system vary according to the application for which the system is designed. However, a single floppy-disk drive unit, a single hard-disk drive unit, and a single CD-ROM drive are typically installed to handle the system's mass storage requirements.
System Board
The system board is the center of the system. It contains the portions of the system that define its computing power and speed. System boards are also referred to as motherboards, or planar boards.
Front Panel
The inside face or the plastic front panel is coated with a conductive paint to limit the radio magnetic interference escaping from the case.
Mini Tower Drawbacks
Unlike their taller relatives, mini towers do not provide abundant space for internal add-ons or disk drives. Mini towers exist more as a function of marketing than as an application solution.
Laptops
With advancements in battery design and the advent of usable, large screen liquid crystal display (LCD) panels, the first truly portable PCs, referred to as laptops, were introduced.
What Are Peripherals?
Peripherals are devices and systems that are added to the basic computer system to extend its capabilities. These devices and systems can be divided into three general categories: Input, Output, Memory.
Adapter Boards
Each peripheral device interacts with the basic system through adapter boards that plug into expansion slots inside the system unit.
Input Devices
Input devices enable you to enter commands and data into the computer more easily than is possible with a keyboard. Common input devices include the mouse, joystick, light pen, and trackball. These devices are covered in detail later in this unit.
System Software
The System Software category consists of special programs used by the system itself to control the computer's operation. Two classic examples of this type of software are: Basic Input/Output System (BIOS) Disk Operating System (DOS)
Reply
#20
hiiiiiii m binkal....final yr stdnt....n want d sem rprt of optical computer....so plz help me if can.....
Reply
#21
please send optical computer full seminar report .
its urg, plz
emailid :naveenreddy9707[at]gmail.com
Reply
#22
hi ............khkj..............................................
Reply
#23
optical computer seminar report
Reply
#24
that is really a good one
Reply
#25
hi thank u. it is very good to see this topichere.
i ab so happy after gettnig this
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: wafer bumping in austin, ultrafast spectroscopy, optical computer technologiesoptical computer, optical computer, optical tweezers seminar report, optical computer seminar, plasmpnocs ppt for seminar full download,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  computer networks full report seminar topics 8 42,010 06-10-2018, 12:35 PM
Last Post: jntuworldforum
  OBJECT TRACKING AND DETECTION full report project topics 9 30,649 06-10-2018, 12:20 PM
Last Post: jntuworldforum
  imouse full report computer science technology 3 24,891 17-06-2016, 12:16 PM
Last Post: ashwiniashok
  Implementation of RSA Algorithm Using Client-Server full report seminar topics 6 26,605 10-05-2016, 12:21 PM
Last Post: dhanabhagya
  ethical hacking full report computer science technology 41 74,436 18-03-2016, 04:51 PM
Last Post: seminar report asees
  broadband mobile full report project topics 7 23,313 27-02-2016, 12:32 PM
Last Post: Prupleannuani
  steganography full report project report tiger 15 41,328 11-02-2016, 02:02 PM
Last Post: seminar report asees
  Digital Signature Full Seminar Report Download computer science crazy 20 43,677 16-09-2015, 02:51 PM
Last Post: seminar report asees
  HOLOGRAPHIC VERSATILE DISC A SEMINAR REPORT Computer Science Clay 20 39,227 16-09-2015, 02:18 PM
Last Post: seminar report asees
  Computer Sci Seminar lists7 computer science crazy 4 11,410 17-07-2015, 10:29 AM
Last Post: dhanyasoubhagya

Forum Jump: