Lightning Protection Using LFA-M seminars report
#1

[attachment=1003][attachment=996][attachment=997][attachment=998][attachment=1013]



ABSTRACT
A long flashover arrester (LFA), which comprises of three flashover modules using the creeping discharge effect, is described in this paper. In this design, the total arrester stressing voltage is applied simultaneously to all of the three modules so that the voltage-time characteristics of the arresters are improved. It assured reliable protection of medium voltage (e.g., 10kv) over head power line against both induced over voltages and direct lightning strokes. A single LFA per support or pole is found to be sufficient to protect an over head line against induced over voltages. An LFA should be arranged in parallel with each insulator in order to protect a line against direct lightning strokes.

INTRODUCTION
A new simple, effective and inexpensive method for lightning protection of medium voltage overhead distribution line is using long flashover arresters (LFA). A new long flashover arrester model has been developed. It is designated as LFA-M. It offers great number of technical and economical advantages. The important feature of this modular long flashover arrester (LFA-M) is that it can be applied for lightning protection of overhead distribution line against both induced overvoltages and direct lightning strokes. The induced over voltages can be counteracted by installing a single arrester on an overhead line support (pole). For the protection of lines against direct lightning strokes, the arresters are connected between the poles and all of the phase conductors in parallel with the insulators.

LIGHTNING
WHAT IS LIGHTNING Lightning is an electrical discharge between cloud and the earth, between clouds or between the charge centers of the same cloud. Lightning is a huge spark and that take place when clouds are charged to at a high potential with respect to earth object (e.g. overhead lines) or neighboring cloud that the dielectric strength of the neighboring medium(air) is destroyed.
TYPES OF LIGHTNING STROKES
There are two main ways in which the lightning may strike the power system . They are
1. Direct stroke
2. Indirect stroke

DIRECT STROKE
In direct stroke, the lightning discharge is directly from the cloud to the an overhead line. From the line, current path may be over the insulators down to the pole to the ground. The over voltage set up due to the stroke may be large enough to flashover this path directly to the ground. The direct stroke can be of two types
1. stroke A
2. stroke B
In stroke A, the lightning discharge is from the cloud to the subject equipment(e.g. overhead lines). The cloud will induce a charge of opposite sign on the tall object. When the potential between the cloud and line exceed the breakdown value of air, the lightning discharge occurs between the cloud and the line.
In stroke B the lightning discharge occurs on the overhead line as the result of stroke A between the clouds. There are three clouds P,Q and R having positive, negative and positive charge respectively. Charge on the cloud Q is bound by cloud R.If the cloud P shift too nearer to cloud Q,Then lightning discharge will occur between them and charges on both these cloud disappear quickly. The result is that charge on cloud R suddenly become free and it then discharges rapidly to earth, ignoring tall object.
INDIRECT STROKE
Indirect stroke result from eletrostatically induced charges on the conductors due to the presence of charged cloud. If a positively charged cloud is above the line and induces a negative charge on the line by electrostatic induction. This negative charge however will be only on that portion on the line right under the cloud and the portion of the line away from it will be positively charged. The induced positive charge leaks slowly to earth. When the cloud discharges to earth or to another cloud, negative charge on the wire is isolated as it can not flow quickly to earth over the insulator. The result is that negative charge rushes along the line is both directions in the form of traveling wave. Majority of the surges in a transmission lines are caused by indirect lightning stroke.
THE LFA PRINCIPLE
When a lightning surge gets to an insulator, the insulator may flashover depending on the overvoltage value and insulation level of the line. Probability of power arc flow (PAF) depends on many parameters: nominal voltage of the line Unom, length of the flashover path L, moment at which lightning stroke occurred, lightning current magnitude, line parameters, etc. It was found that the main factor, which determines the probability of PAF, is the mean gradient of operational voltage along the flashover path.
E = Uph/L
Where Uph = Unom /3 =phase voltage, kV;
L = length of flashover,
The probability of PAF sharply decreases with a decrease in E. An analysis of available data on spark over discharge transition to PAF concluded that for E=7 to 10 kV/m probability of PAF is practically zero. The flashover length, L is greater for lines with wooden structures rather than steel or concrete structures, because wooden Cross-arm increases the flashover path. As a result probability of PAF for wooden structures is sufficiently lower than for steel or concrete supports. From the short analysis presented above, it is clear that it is possible to improve the protection against lightning by increasing the length of lightning flashover path. The suggested LFA accomplishes this principle. The LFA's length may be several times greater than that of an insulator (string, etc.). Due to a special inner structure the LFA impulse flashover voltage is lower than that of the insulator and when subjected to lightning overvoltage the LFA will flashover before the insulator.
DESIGN OF LFA-M
An LFA-M arrester consists of two cables like pieces. Each cable piece has a semi conductive core of resistance R. The cable pieces are arranged so as to form three flashover modules 1,2,3 as shown in figure1.Semiconductive core of upper piece, whose resistance is R ,applies the high potential U to the surface of the lower piece at its middle.Similiarly,the semi conductive core of the lower piece of the same résistance R applies the low potential 0 to the surfaces of the upper piece, also at its center. Therefore the total voltage U is applied to each flashover module at the same moment, and all three modules are assured conditions for simultaneous initiation of creeping discharges developing in to a single long flashover channel.
Tests have been shown that, as the line conductor is stressed by lightning over voltage impulse, flash over channel develop at different rates.Modules1 and 3 flashover first, followed by module 2 ,and thus, forming a rather long flashover channel along the LFA.
Due to long flashover path, a flashover does not give rise to a power arc as the arc extinguishes when the power frequency current crosses zero. This assures uninterrupted power supply of a LFA protected over head line.
FLASHOVER PERFORMANCES
The flashover performance of modular long-flashover arresters(LFA-M) arresters of two different flashover lengths and the voltage-time characteristics of LFA loop arresters, as well as those of the most common Russian insulators ShF 10-G and ShF 20-G with lengths 17 and 23 cm,respectively,were studied. The 50% flashover voltages of these units are 130 and 160 KV when stressed by 1.2/50 lightning impulses of negative polarity. therefore, these units will be referred hereafter as INS 130 and INS 160,respectively.
The voltage-time characteristics of the arresters and insulators can be approximated by the expression
U=a tb
Where, U=flashover voltage in kilovolt.
t=time to crest in microseconds.
a,b are empirical coefficients whose values are given in the table
test object impulse polarity A b
insulator ins130 + 190 -0.352
insulator ins 130 - 185 -0.285
insulator ins160 + 243 -0.407
insulator ins160 - 280 -0.28
LFA-M,L=1m +,- 109 -0.784
LFA-M,L =2 m +,- 173 -1.05
LFA-M,L=0.8m + 159 -0.5
LFA-M,L =0.8m - 107 -1.64

PROTECTION AGAINST DIRECT LIGHTING STROKES
GENERAL PATTERN OF DIRECT LIGHTNING STROKES

The physical phenomena associated with a direct lighting stroke on an unprotected power line causing line tripping. The general pattern is as follows. For an overhead line in delta configuration shown in fig2, the top center face is the most vulnerable. For a lightning stoke on a phase conductor, the lighting current propagates both ways from the stroke point overcoming the surge impedance Zs of the line. A fairly high voltage drop develops at the points where the lines equivalent resistance equals half of the surge impedance Zs/2; this point is the closest to insulator unit of the lightning struck phase conductor. The voltage causes the insulator to flashover. A heavy impulse current flows through the flashover channel, the pole, and the pole footing resistance resulting into a large sharp voltage rise at the cross-arm.. Due to electromagnetic coupling between phases, the potential of the healthy outer phases also increases and it can be assessed from the conductor coupling factor. This voltage, however, is not as high as that for the lightning struck-conductor. Thus, the insulators of the healthy phases are stressed and flashed over by a voltage equal to the potential difference between the cross arm and the phase conductor. Phase to phase lightning flashover is also highly probable to occur resulting to a power arc accompanied by heavy short circuit currents, which causes immediate line tripping.


PROTECTION USING LFA-M
It follows from the previously described sequence of events that direct lightning stroke causes flashover of all the insulators on the affected pole. Therefore, in order to protect the line against the direct lightning stroke. LFAs should be mounted on the pole in parallel with each line insulator. A delta arrangement of conductors maximizes direct lightning strokes on the top (center) phase, which acts as shielding wire for the bottom (outer) phases. The shielding failure of the outer phases is reduced and it is given by the following equation.
Pfail = exp
Where, =protection angle between the top and bottom phases in degrees
ho= the pole height in meters.

For example, for ho = 10 m and = 300, the probability of a lightning stroke on the outer phases can be as slow as 0.001.
An LFA mounted on the top phase must flash over before the top phase insulator. It is stressed by fairly steep over voltage impulses associated with direct lightning strokes on a conductor. Therefore, this arrester should be relatively short.

After a top phase LFA flashes over, lightning current will flow, through the affected conductor and through the pole to the ground. Thus, the voltage on the cross arm increases at a much slower rate than it does on the lightning struck conductor before the flashover of the top phase LFA . On the other hand, the potential of the adjacent phases also increases due to electromagnetic coupling between conductors but at much slower rate than that applied to the top phase insulator consequently, an outer phase arrester operates under much easier coordination conditions than a top phase arrester. With one or both outer phase arresters activated, a two or three phase lightning flashover is initiated. To prevent transition of an impulse flash over to a PAF, the total flashover path L must be long. It can be calculated from the formula.
L= Ul/Ecr
Where Ul is the maximum operating line voltage; Ecr is the critical gradient of the power frequency voltage that rules out PAF.

CRITICAL GRADIENT AND LENGTH OF LFA-M


Some results of published experimental studies on the critical gradient are shown . As seen the critical gradient depends greatly on the line fault current. As the fault current increases from 20 “ 300A, the critical gradient drops abruptly from 20 “ 7kV/m.The rate of decrease of the critical gradient slows down for larger fault currents. Over the 1000-10000A fault current range, the critical gradient decreases from 5-4kV/m.
Phase-to-phase faults on a pole can give rise to fault current in order of a few kiloampers. Therefore the critical gradient can be assumed to be 4kV/m. for a 10kV power line operating at maximum voltage (20% higher than nominal), the total flash over length is equal to L=12/4=3m. With 1-m flash over length of the top center phase LFA, the length of the LFA protecting an outer phase must be 2m.

PERFORMANCE ANALYSIS OF DIRECT LIGHTNING STROKE PROTECTION
The direct lightning performance of the modular arresters was carried out using the equivalent circuits.The arresters are connected between the pole and all of the phase conductors in parallel with the insulators. The arresters are assumed to be variable resistors whose resistance changes step wise from infinity to zero, in steps of , R , R/2, 0.
As illustration, let us consider the operation of phase A arrester. Due to different propagation rates of flashover channels for lightning impulses of positive and negative polarity, the first module to flashover is module 1 with a flashover length of l1. Before flash over, the total resistance of the arrester can be assumed to
be infinitely large . After module 1 flasheover at time t1, the arrester resistance RA is equal to that of one cable piece RAO, that is RA = RAo = LAoRA where LA o is the length of one cable piece of phase A arrester, LFA A, and Rl is the per-unit- length resistance of the cable.
As tests have shown, module 3 of phase a arrester will usually flash over after module 1. At this instant t2, the resistance RAO of the second cable piece gets connected in parallel with the resistance of first piece and the total equivalent resistance of the arrester becomes RA =RAO/2. When the central part of the arrester flashes over at instant t3, the arrester sparks over through a single spark channel of very low resistance. Since the resistance of the flash over channel is low compared to other resistance affecting lightning over voltages (surge impedance of the conductor and of the lightning channel, etc.) It was assumed to be equal to zero. Therefore, starting from instant t3 the arrester resistance RA is zero a lightning stroke on the phase A include voltages on the outer phases B & C . However, as shown by calculations, until arrester LFAA flashes over, none of the modules of phase B arrester, LFAB, flash over. In other words , in time interval t3 < t t4 when LFAA flashes over completely, none of the LFABâ„¢s modules are affected. As the voltage keeps rising, module 1 of LFAB flashes over, and the flash over development and resistance change for the LFAB follow the same pattern described for the LFAA .
The effect of the power frequency voltage of a 10-kV line on discharge process on the arrester surface is negligible. Since phases B and C and their arresters operate under identical conditions, it is practical to combine them in an overvoltage analysis.
Phase B and C arresters are represented by a variable resistance RB/2 while the surge impedance of phases B and C on both sides of their arresters are represented by resistance ZS/4 where ZS is the line conductor surge impedance. The pole inductance is replaced by the concentrated inductance Xpole = Lohpole ,where Lo¬=1H/m is the per-unit-length inductance of the pole and hpole is the pole height

FLOW CHART OF LIGHTNING OVERVOLTAGE PROTECTION

A flowchart of the calculations is shown in fig6. First, the line parameters are entered, including the arrangement and radius of the conductors, the pole height, the grounding resistance, etc. Next, the insulators and arresters voltage-time characteristics (VTCs) are entered in an analytical form. Finally, the overvoltage calculations are performed for a given lightning current steepness in order to determine the lightning protection performance. The calculation is carried out for a linear increase of the lightning current, that is
I1=Il 1t
Where Il 1t is the lightning current steepness and it is the time
Time is incremented in equal steps t. The equivalent EMF e is calculated as follows
e = I1Z1
where Z1 is the surge impedance of the lightning channel (Z1 = 300).
The equivalent circuit for this time interval is elementary comprising e, Z1 and Zs/2.It is shown in the figure(5)
The next step is to calculate flashover voltages for the individual discharge components or modules. Initially, for tt1, the equivalent resistance of phase A and B arresters (LFAA and LFAB, respectively) is infinitely large.

The voltage and its rate of rise on arrester LFAA and insulator InsA are calculated. Equation (A4) of the Appendix is used to find the rate of propagation of discharge channels in modules 1 and 3 of arrester LFAA and the distance covered by these channels over time t.It is given below

V = lt-1 =l
Next, the channel lengths in the LFAAâ„¢s modules are compared to the modules lengths. If the channel length is greater or equal to the module length, a flashover is assumed to have occurred for that particular module and the equivalent arrester resistance abruptly becomes equal to the resistance of the respective semi conductive cable section. Furthermore, the arresters and insulators are checked for flashover based on their voltage-time characteristics. Flashover of insulator InsA indicates lightning protection failure. At this point, the calculation is stopped and the output is printed, including the steepness of the lightning current I11 at which the insulator flashed over. If insulator InsA does not flashover, the calculation restarts at a new time step of ti+1 = ti+t, where ti and ti+1 are the instants of iterations i and i+1, respectively. After a module of the LFAA flashes over across resistance RA, the pole reactance Xpole and Rg get involved, and the voltage and the rate of voltage rise on InsA, LFAA, InsB, and LFAB are calculated. The rate of channel propagation on arrester modules is determined, and the modules are checked for flashovers. In case of a flashover, the respective resistance RA and/or RB is changed. Finally, the calculation is checked for completion. If both the LFAA and LFAB arresters flashed over the lightning protection system performed successfully: If a flashover occurred on at least one of the insulators InsA or InsB. The lightning protection failed. Both results put an end to the calculation, and printout is produced. If only a partial flashover of the arrester occurred. The calculation is restarted as a new time step t.
VOLTAGE-TIME CHARATERISTICS OF ARRESTERS AND INSULATORS
typical voltage versus time curves for phase A and B insulators and arresters. It is seen that until module 1 of the LFAA arrester flashes over (t t1) the rate of rise for phase A voltage is quite high. When module 1 flashes over at instant t1, the voltage first drops abruptly but insignificantly and then it starts increasing but at a slower rate in the t1< t t2 interval. When module 3 flashers over at instant t2, the voltage drops abruptly again and then, over the t 2 < t t3 interval. It keeps increasing at a still slower rate until time t3. At t 3. Phase A voltage curve crosses the VTC curve of the LFAA arrester and the second (middle) module of the LFAA flashes over. (i.e., the arrester is now fully flashed over and the voltage drops on both the insulator and phase A arrester). At instant t3 an opposite polarity surge takes rise on insulator Ins B and arrester LFAB of phase B. After the LFAA fully flashed over, the lightning current travels through the pole and its footing. Thus, the voltage on phase B rises at a much slower rate than on phase A before the LFAA¬ flashed over. The pattern of voltage rise on the LFAB is similar to that on the LFAA but features a slower rate of rise. At instants t4, t5, and t6 the first, third, and second modules of arrester LFA B flash over, respectively, changing the resistance of the arrester.

the VTC of insulators and arresters cross at relatively small times to crests tcr. For a line using INS160 insulators and phase A LEFs with a flashover length lA= 1m. the critical time is tcr.A¬ = t3 0.3 s. The average span length Ispan of a 10-kV line is usually about 70m. The travel time of a reflected wave from the nearest pole to the lightning-struck pole is given by ttr = (lspan + lspan)/ s (70+70)/300 0.5 s
Where s 300m/s is the speed of propagation of an electromagnetic surge along the line. Thus, ttr is larger than tcr. ttr and a voltage surge reflected from the nearest pole comes to the lightning struck pole only after the arrester has operated or the insulator flashed over. Therefore, the nearest pole is not to be taken into account in the coordination analysis of the LFAA.
For a line using phase B arresters with a flashover length lB = 2 m, the critical time is tcrB = t6 0.8 s (i.e., a voltage surge reflected from the nearest pole will be able to reach the lightning “ struck pole and lower the voltage applied to insulator InsB and arrester LFAB). The above calculation does not take into account the effect of near-by poise: thus, the calculated lightning performance of LFA-protected overhead lines can be regarded to have a certain margin.
in evidence a lightning protection hazard of steep lightning over voltages. The voltage rate of rise Ul is proportional to steepness of the lightning current. This is the reason why the calculation takes into account the critical values of the lightning current steepness Ill,cr at which the insulator flashes over for a given set of parameters.

EFFICIENCY OF LFA-M
the critical lightning current steepness Ill,cr decreases versus grounding resistance Rg for a line with INS160 insulators. It can be clearly seen that as the grounding resistance increases, the critical lightning current steepness Ill,cr decreases.

The number of lightning outages n o caused by direct lightning strokes (DLS) on conductors of an unprotected line can be estimated by the following equation
n0=NDLS P( Il)Parc(1-Prc)
Where NDLS is the number of direct lightning stroke(DLS) on a line; P (Il) is the probability of lightning current likely to cause flashovers of the line insulation; Parc is the probability of a power are caused by an impulse flashover an insulator; and Prc is the probability of successful line breakers enclosures
It is shown that the steepness and not the magnitude of lightning current Il l Il is the important factor in the performance if a LFA protected line thus(1) can be written in the following form.
Where n|0 is the number of lightning outages on an LFA protected line caused by direct lightning strokes on the phase conductors and P (Il,cr) is probability of a lightning current with steepness greater or equal to Il,cr
The efficiency of LFA lightning protection against direct lightning strokes can be expressed as the ratio of the number of lightning outages n0 for unprotected line to n|0 for lines protected by LFA arresters .
K = =
Where k is the outage reduction factor of lightning outages caused by direct lightning strokes.

GROUNDING RESISTANCE AND REDUCTION FACTOR
the outage reduction factor of a line protected by LFA 10-M arresters (IA=1M; LB=LC=2M), versus the grounding resistance for the INS 160 and INS 130 insulators. A line with LFA arresters and INS 160 insulators is shown to have a good lightning protection performance for direct lightning strokes. For grounding resistance Rg = 10, LFA 10-M arresters assure a 200-fold decrease of lightning outages, virtually ruling them out. As the grounding resistance increases, the outage reduction factor k decreases faster up to Rg = 50 and then more slowly . for Rg = 50 . K is approximately equal to 20 and for Rg = 80 , k= 10. Thus, the number of outages caused by direct lightning strokes can be lowered with the use of LFA arresters by an order of magnitude or more even for high values of grounding resistance.
As shown by calculations, in the case of INS 160 insulators, it is important to coordinate the performance of phase B arrester and insulator because the voltage rate of rise, and thus, the lightning protection efficiency at direct lightning strokes depends heavily on the grounding resistance.
With the INS130 insulators the number of lightning outages is lowered by a factor of five, the outage reduction factor KDLS being practically independent of the grounding resistance. In the case, it is essential to coordinate the arrestors and the insulators on the lightning struck phase A. As indicated before, the coordination of arrester LFA A is not depend on the grounding resistance because the pole does not
get involved in the path of the lightning current until the insulator or the arrestors have flashed over. It was shown by the calculation that a 1-m- long arrestors. LFA A is coordinate with an INS130 insulators at much lower values if the lightning current steepness than with an INS160 unit. It was also shown that, after the LFAA arrestors has successfully operated, the voltage rate of rise on phase B insulator and its arrestor becomes low and this facilities successful operation of the LFAB arrestor, at least, over the 10 to 100- grounding range.
It should also be remembered that even large lightning currents do not present any hazards to these arrestors because the discharge develops in the air and not inside the device. Therefore, this new lightning protection system is thought to feature simple design, low cost, and high reliability.

FUTURE EXPANSION
The LFA-M described here consists of three flashover modules. We can increases the flashover modules. If the number of flashover modules increases by increasing the cable pieces this LFA-M can be used for lightning protection of very high voltage lines. When the modules increases the total arrester stressing is distributed these modules also. Then it can withstand very high over voltages.

CONCLUSIONS
1. A long flashover arrestor (LFA) comprising three flashover modules using the creeping discharge effect was presented in this report. Its resistors assure application of the total arrestor-stressing voltage simultaneously to all the modules.
2. The voltage-time characteristics of this modular arrestor assure reliable protection of medium voltage overhead lines against both induced over voltages and direct lightning strokes.
3. To protect a line against induced over voltages; a single arrestor must be mounted on a pole.
4. The conditions for the efficient protection of a medium voltage (e.g. 10-kv) overhead line against direct lightning strokes, are as follows:
o Delta phase configuration of phase conductors
o Mounting of LFA-M arresters on all poles in parallel with each insulators ;
o A relatively short flashover path (for example, 1 m for a 10-kv line) for the top phase LFA-M arrester
o A longer flashover path (for example 2 m for a 10-kv line) for the bottom phase LFA-M arresters

REFERENCES
1) IEEE TRANSACTIONS ON POWER DELIVERY
VOL.18,NO 3,JULY 2003 PAGE NO. 781-787
2) PRINCIPLES OF POWER SYSTEM BY V.K. MEHTA
ROHIT MEHTA
3) ieee.org

APPENDIX
THE PROPAGATION RATE OF FLASHOVER CHANNELS ON
THE LFA SURFACE
The propagation rate of flashover channels on arresters and insulators can be estimated from the voltage-time characteristics.
The average channel propagation rate is


V= (A.1)
Where l is the flash over path length t is the flash over time. It is assumed that the channel propagation rate is a function of voltage steepness (i.e; the voltage rate of rise) U|. it can be written as

U| = = = at (A.2)
whence
t= (A.3)
Substituting (A3) into (A1), we obtain
V = lt-1 =l (A.4)
For illustration (A4) is used to calculated the channel propagation rate for arrester LFA-L with flashover length l=80 cm stressed by a standard 1.25/50 s , 100-kv lighting impulse. The voltage steepness is
U| 100/1.2 83kv/s. For appositive polarity impulse, a+ =159 and b+ =-0.5


V+ = 80 52 cm / s
For a negative polarity impulse. a- =107 and b- =-1.64
v- = 80 73cm / c
It is therefore seeing that the rate of propagation of the lighting flashover channel for a voltage close to 50% flashover voltage is about 40% larger for the negative polarity than for the positive polarity impulse. This agrees well with findings of a study on propagation of surface creeping discharges on covered conductors showing that flashover channels are always longer and flashover voltages lower for negative lightning impulses.






CONTENTS
1. INTRODUCTION 01
2. LIGHTNING 02
2.1 WHAT IS LIGHTNING
2.2 TYPES OF LIGHTNING STROKES
3. THE LFA PRINCIPLE 04
4. DESIGN OF LFA-M 05
5. FLASHOVER PERFORMANCES 07
6. PROTECTION AGAINST DIRECT LIGHTING STROKES 08
6.1 GENERAL PATERN OF DIRECT LIGHTNING STROKES
6.2 PROTECTION USING LFA-M
6.3 CRITICAL GRADIENT AND LENGTH OF LFA-M
7. PERFORMANCE ANALYSIS OF DIRECT LIGHTNING STROKE PROTECTION 12
8. FLOW CHART OF LIGHTNING OVERVOLTAGE PROTECTION 15
9. VOLTAGE-TIME CHARATERISTICS OF ARRESTERS AND INSULATORS 18
10. EFFICIENCY OF LFA-M 21
11. GROUNDING RESISTANCE AND REDUCTION FACTOR 23
12. FUTURE EXPANSION 25
13. CONCLUSIONS 26
14. REFERENCES 27
APPENDIX 28


Reply
#2
please read http://studentbank.in/report-lightning-p...fa-m--1428 and http://studentbank.in/report-lightning-p...ars-report to get more information about Lightning Protection Using LFA-M
Reply
#3
[attachment=3822]


Lightning Protection using LFA-M arrester

PRESENTED BY:
RAJLAXMI SAHA
7TH SEM,ELECTRICAL,0501211500


CONTENTS

INTRODUCTION
PRINCIPLE
NEED OF LFA-M ARRESTER
LFA-M DESIGN
FLASHOVER CHARACTERISTICS
TYPES OF LIGHTING STROKES
PROTECTION USING LFA-M
TESTS FOR LFA-M ARRESTER
FUNCTIONING
APPLICATION
BENEFITS OF LFA-M ARRESTER
FUTURE EXPANSION
CONCLUSION



INTRODUCTION

A new simple,effective & inexpensive method for
Lightning protection of medium voltage overhead
Distribution line is using a long flashover arrester
It designated as LFA-M which comprisres three
Three flashover modules using the discharge effect
The total arrester stressing voltage is applied
Simultaneously to all the three modules so that voltage time
Charactertics of the arresters are improved and In order to prevent
Arc fusion of insulated conductors on distribution lines due to
lightning flashover it is recommand to install an arrester at every
insulator against both induced overvoltages &direct lightning
Strokes.



PRINCIPLE

When a lightning surge gets to an insulator
May flashover depending on the overvoltage
Value & insulation level of the line .
PAF (power acr flashover) depends on
Many parameters such as:
>nominal voltage of line Vnom
>length of flashover path L
>moment at which lightning stroke occurred ,lightning curent magnitude,line parameters

E=Vph/L
Vph =Vnom/1.732,phase voltage kv
L=length of flashover ,m
PAF decrease with decrease in E analysis of available data on spark
Over discharge transition to PAF conclude that E=7 to 10 kv/m probablity of
PAF is pratically zero .Flashover length is greater for lines with wooden structures rather
Then steel or concrete support. So this analysis presented above it is clear that it is
Possible to improve the protection against lightning by increasing the length of lightning
Flashover path. LFAâ„¢s length may be several times greater than that of an insulator .
Due to special inner structure the LFA impulse flashover voltage is lower than that of the insulator &
When subjected to lightning over voltage the LFA will flashover before insulator.
In russia for lightning over voltage & conductor burn protection of 10kv overhead lines.



NEED OF LFA-M ARRESTER

Distribution power lines are most common. According to information provided
by the Lenenergo (St Petersburg Power Administration), the total length of 6-
10 kV overhead lines in service in the Russian Federation exceeds 1200
thousand kilometers, 698 thousand km of which (including 450 km
in the Lenenergo grid alone) must be replaced or uprated. Power supply
reliability is very much a function of the reliability performance of 6- 10 kV
overhead lines. For a number of reasons the reliability performance of 6- 10
kV overhead lines remains low. Because a majority o loads are supplied by 6-
35 kV lines whose reliability is below that of higher voltage lines distribution
Grids account for a large percentage of power supply interruptions, both in
terms of incidence and duration. This holds true both for Russia and other
countries. Forexample, 11 to 33 kV overhead lines in Japan account for 88%
of total supply interruptions and 77% of total line outages for lines of
all voltage ratings [1]; 2 to 33 kV lines in UK are responsible for 77% of supply
interruptions [2].In Russia some 30 to 50% of line outages stem from mechanic
causes (falling towers, conductors broken by wind or ice, vandalism etc.),
while some 50 to 70% are due to electrical causes including:
¢ insulation flashovers and power arc onset at lightning overvoltages
¢ insulation flashovers at switching and quasistationary overvoltages
¢ operating voltage insulation flashovers due to pollution and wetting
¢ lightning impulse puncture of insulators
¢ insulator failures due to power arc
¢ conductor burn down due to power arc
¢ other electrical causes.
A low reliability level of 6-10 kV lines results in high undersupply penalties, as well
as in a considerable increase of maintenance costs. Among objective causes of a
poor reliability Performance of 6-10 kV lines one should point out a fairly low
impulse strength of line insulation. For lines with reinforced concrete poles it is
around 130-150 kV. Thus each lightning stroke on or near such a line of a
conventional design that results in a lightning overvoltage in excess of 150 kV
causes a flashover. There is also a heavy probability of a steady power arc,
which brings about quasi-stationary overvoltages and equipment damage and
necessitates disconnection of the line and thus load shedding. Unless special
lightning protection steps are taken to overhead lines with covered conductors, a
lightning overvoltage leads first to a flashover of a line insulator and next to a
breakdown of the solid conductor insulation. With a high probability such a
lightning flashover brings about a power frequency arc which keeps burning at
the insulation breakdown point until the line is disconnected.The arc can easily
burn the insulating covering and, with heavy fault currents, melt the conductor [3].
A subjective reason is that utilities resigned themselves to an "inherently low"
lightning performance of 6-10 kV lines. The above brief analysis shows that it
highly imperative to enhance the reliability performance of 6-10 kV lines. Their
Operational reliability can be improved many times over through ruling out or
reducing radically the percentage of outages due to electrical causes. To achieve
this, it is necessary to assure a high lightning performance of such lines and to
make the line insulation less vulnerable to other electrical stresses.



LFA-M DESIGN & OPERATION

An LFA-M arrester consists of two cable like pieces
With a resistive core[3].There are also intermediate
Ring electrodes on its surface. Cable pieces are
Arranged so as to form three flashover modules 1,2,3
As shown in figure .The resistive core of the upper
Piece whose resistance is R applies the high potential
V to the surface of the lower piece at its middle
Similarly the resistive core of the lower piece of the
Same resistance R applies the low potential 0 to the
Surface of the upper piece also at its center. In this way the
Total voltage V is applied to each flashover modules at the
Same moment & all three modules are assumed conditions for
Simultaneous initiation of creeping discharge developing into single
Long flashover channel.



FLASHOVER CHARACTERISTICS

LFA-Insulation Tube
LFA-IT prototype for 10 kV distribution lines was built in accordance with Fig. .The diameter of the conductor was 9mm and the tube wall thickness was 8mm .The flashover length of the line insulator was 17 cm (without sparkover horns) and the flashover length of the LFA-IT prototype was l=75cm. The air gap S varied from 0 to 17 cm. The LFA was tested by 1.2/50 ms lightning impulses of positive and negative polarity. Test impulse was applied to the conductor while the pole was grounded (Please note that after the gap is sparked over gap, the polarity of metal tube clamp which is placed in the middle of the insulated tube becomes opposite to that of the conductor). Test results are
Table 1. LFA-IT lightning impulse flashover voltages
Sparkover gap S, cm 50% flashover voltages, U50% , kV
polarity
positive negative
0(the insulator is shunted) 112 170
5 150 175
17(without sparkover horns) 310 215
POWER ARC FOLLOW (PAF)
The test circuit (see Figure 4) consisted of three impulse current generators. Lightning ImpulseGenerator (LIG) provided lightning impulses with crest voltages up to 220 kV and current amplitudes up to 15 kA, front time from 1 to 5 µs and duration (time to half value) from 40 to 60 µs. Lightning impulses were applied to the tested object via
Figure 4: Power Arc Follow Test Circuit
LIG = Lightning Impulse Generator;
K1, K1= Keys;
DC1, DC2 = Direct Current Sources;
GAP1, GAP2 = Air Gaps;
IG = Triggering Impulse Generator;
LFA = Tested LFA Sample;
C1=C2=0.1 µF; C3=300 µF; C4=1000 µF; L1= L2=
L3= 1 mH, L4= 100 µH, R1=100 Ohm, R4=100 Ohm,
R2 and R3 varied from 0 to 120 Ohm.
protective GAP1. As the protective gap the LFA sample with a 1 m flashover length was used.
Two generators with discharge capacitors C3 and C4 were used to simulate the positive and negative half-periods of the operating voltage, respectively. The second generator was applied after a time delay of 3 to 5 ms using triggering Impulse Generator (IG). Capacitors C3 and C4 were charged from dc current sources DC1 and DC2, respectively. The simulated operating voltage was applied to the LFA through a distribution line model which consisted of capacitors C1 and C2, inductances L1, L2 and L3 and a 350-m long cable, simulating an overhead distribution line of approximately 6 km in length. After application of the lightning impulse to the LFA sample, capacitor C3 discharged through the line model forming a positive half-cycle of the operating voltage. After 3-5 ms, GAP2 was triggered and a negative operating voltage half-cycle was applied from circuit C4,L4 and R4. The length of the tested LFAs varied from 0.2 to 2 m, the
resistances R2 and R3 varied from 0 to 120 Ohms and the charging voltage U of capacitors C3 and C4 varied from 0 to 9 kV. During testing, U was increased in 0.5 kV steps. The highest charging voltage U at which there was no Power Arc Follow was determined as the critical voltage, Ucr. Thus the mean critical gradient was defined as Ecr=Ucr/l, where l = flashover length along the LFA. For measuring the short-circuit current Is.c., the LFA was replaced by a short copper wire. Test results including typical voltage and current
oscillograms are presented in [6]. They can be approximated by a formula:
Ecr=100(42-3.4U)/Is.c. (1)
where: Ecr = [kV/m]
U = [kV] in the range from 0 to 9 kV It can be seen from equation (1) that Ecr depends on the short circuit current Isc and the operating voltage, U. The higher are the short circuit current Is.c and the voltage U,
the lower is the critical gradient Ecr.Is.c = [A] in the range from 0 to 1000A; all parameters are peak values.




TYPES OF LIGHTNING STROKES

There are two main ways in which the lightning
May strike the power system.
>Direct stroke
>Indirect stroke
Direct stroke:
In direct stroke the lightning discharge is directly
From the cloud to the overhead line. From the
Line, current path may be over the insulators down to
The pole to the ground. Over voltages set up due to
Stroke may be large enough to flashover this path directly to
Ground.
Stroke A:
The lightning discharge is from the cloud to the subject equipment (e.g overhead lines)
The cloud will induce a charge of opposite sign on the tall object. When the potential
Between the cloud & line exceed the breakdown value of air, the lightning discharge occurs
Between the cloud & the line.



Stroke B:

The lightning discharge on the overhead line as the result of stroke A between the clouds. There are three clouds
P,Q&R having positive , negative &positive charge respectively .Charge on the cloud Q is bound by cloud R .If the clouds P shift too
Nearer to cloud Q, then lightning discharge will occur between then R charges & both these cloud disappear quickly. The result is
That the charge on the cloud are suddenly become free & it then discharges rapidly to earth, ignoring the tall object.


Indirect stroke:

The results from electrostatically induced charges
On the conductors due to the presence of
Charged cloud. If a positively charged cloud is
Above the line & induce a negative charge on the
Line by electrostatic induction. This negative
Charge however will be only on that portion on
The line right under the cloud & the portion of the
Line away from it will be positively charged. The
Induced positively charge leaks slowly to earth. When
The cloud discharges to earth or to another cloud,
Negatively charge on the wire is isolated as it cannot flow quickly
To earth over the insulator. The result is that negative charge
Rushes along the line is both direction in the form of traveling wave.
Majority of the surges is a transmission line are caused by indirect lightning
Stroke.




PROTECTION USING LFA-M

It follows from sequence of event that direct
Lightning stroke causes flashover of all the
insulators on the pole. Therefore in order to protect
The line against the direct lightning stroke LFA should be
Mounted on the pole in parallel with each line insulator .
A delta arrangement of conductors maximizes direct lightning stroke on
The top which acts as a shielding wire for the bottom spheres .LFA mounted on
The top phase must flash over before the top phase insulator. It is stressed by fairly step
Over voltage impulses associated with direct lightning strokes on conductor. Therefore this arrester
Should be relatives short .After atop phase LFA flashes over, lightning current will flow, through pole
To the ground. Thus voltage on the cross area increases at much slower rate then it does on the
Lightning struck conductor before the flashover of the top phase LFA. On the other hand the potential
Of the adjacent phase also increases due to electromagnetic coupling between conductors but at
much slower rate then that applied to the top phase insulator consequently, an outer phase arrester
operates under much easier. Coordination condition then a top phase arrester with
One or both outer phase arrester activated, a two or three phase lightning flashover is Initiated.



TESTS FOR LFA-M ARRESTER

We perform two tests for LFA-M arrester
-Quenching tests for LFA-M
-Dielectric tests
Quenching tests for LFA-M:
->The quenching tests for LFA-M was performed in NIIVAâ„¢S lab st.petersburg Russia.
->The power frequency which was 50Hz & resistance R which was short circuited .
->Test results are summarized in table.

Table II: Quenching Test Results for LFA-M, R = 0 _, Ishortcircuit
= 4000 A, V50Hz = 8.7 kVrms. Ifoll = Following
current.
Vg (kVdc) Tests Ifoll (Acr) Result
200 5 1084 All quenching
240 2 1196 All quenching
248 1 1215 Quenching
248 1 1400 No quenching
->There are two possibility of current quenching :
# when current impulse finishes (further quenching at front)
#when power frequency passes zero (further quenching at zero)
->LFA-M successfully quenches power follow current for a circuit with short circuit current of 4kv & for power generator voltage of 8.7 kvrms.
->Therefore for lower grid voltage of 7.5 kvrms it is expected that LFA-M quench high value of power flow currents
Dielectric tests: (using insulators)
-Lightning impulse tests
The determination of the impulse withstand
Voltage was made using the up & down test
Method with 30 impulses at both polarities in
The following conditions:
With out LFA under dry condition
With LFA under dry condition
With LFA under wet condition
LFA “M was connected to the conductor directly,
Without air gap. During test all flashover occurred
At LFA while the insulators withstood applied impulses. The obtained flashover voltages of all types of insulators.
-Radio interference voltage tests
RIV tests were also carried out in the arrangement with LFA & insulators. The criterion consider RIV max limit =200microV,1MHZ under 8.8KVrms.Test in following condition.
Without LFA under dry condition
With LFA-M under dry condition
-Power frequency tests
The determination of 60HZ disruptive discharge voltages was made of 34KVrms it withstand voltage level for 15KV distribution lines applied to LFA-M.
Test in following condition.
It made under dry &wet condition during 1min
No discharge occurred for all test arrangement & conditions




FUNCTIONING

> It protects conductors from burn outs
> It protects lines insulation against lightning over voltages
> It protects overhead lines & mounted equipments against lightning outages & damage
> It protects power grids against arc faults.



APPLICATION GUIDLINES

>Protection against induced over voltages:
To eliminate high short circuit currents associated with two-or three-phase lightning flashovers to ground, LFA-Ls are recommended to be installed one arrester per pole with phase interlacing figure With such an arrangement, a flashover to ground results in a circuit comprising two phases, two arresters and two grounding resistors that limit the fault current and ease arc quenching. The higher are the values of the grounding resistance, the more effective is LFA-L operation.



>Protection against direct lightning strokes:

A direct lightning stroke causes flashover of all the insulators on the affected pole. Therefore, in order to protect the line against a direct lightning stroke, LFA-Ms should be mounted on the pole in parallel with each line insulator figure. Phase-to-phase faults on a pole can give rise to follow-up current on the order of 10 kA or more. In order to quench such currents, flashover length of the LFA-M 13.8 kV should be 1.7 m, i.e. much higher than that of LFA--L(0.9 m) which intended to protect overhead lines against induced over voltages.



BENEFITS OF LFA-M ARRESTER

->The LFA is that current passes outside the apparatus ,flowing along arrester surface. Therefore the arrester cannot be destroyed by excessive current at direct lightning stroke
->It is the simple & reliable construction.
->It can efficiently protect distribution lines from induced over voltages flashover.
->It is inexpensive & no need of maintance.

FUTURE EXPANSION

LFA-M described here consists of three flashover Modules. We can increase the flashover modules .If number of flashover modules increase by Increasing the cable pieces this LFA-M can be Used for lightning protection of very high voltageLines. When the modules increases the total Arrester stressing is distributed these modules also Then it can withstand very high over Voltage.



CONCLUSION

Long Flashover Arresters were developed to protect overhead distribution lines against lightning over voltages
and conductor-burn and have been successfully used in Russia 10 kV lines. In order to check their dielectric and
operating performances considering their possible application in 13.8 kV overhead lines, laboratory tests
were carried out under high voltage and impulse current conditions. Based on the technical information and test
results presented here, the following conclusions can be drawn:
a. Long Flashover Arresters of Loop (LFA-L) and
Modular (LFA-M) types had a good performance
in the dielectric, lightning impulse, radio
interference, power frequency and power arc
quenching tests.
b. LFA-Ls can protect overhead 13.8 kV lines
against induced over voltages. LFA-Ls are
recommended to be installed one arrester per
pole with phase interlacing.
c. LFA-Ms can protect overhead 13.8 kV lines
against over voltages of direct lightning strokes.
LFA-Ms should be mounted on the pole in
parallel with each line insulator.
Reply
#4
[attachment=5146]
Lightning of a building


ABSTRACT
A long flashover arrester (LFA), which comprises of three flashover modules using the creeping discharge effect, is described in this paper. In this design, the total arrester stressing voltage is applied simultaneously to all of the three modules so that the voltage-time characteristics of the arresters are improved. It assured reliable protection of medium voltage (e.g., 10kv) over head power line against both induced over voltages and direct lightning strokes. A single LFA per support or pole is found to be sufficient to protect an over head line against induced over voltages. An LFA should be arranged in parallel with each insulator in order to protect a line against direct lightning strokes.


Reference: http://studentbank.in/report-lightning-p...z11Yj9f8fd
Reply
#5


By: D.S.P. Edirisinghe

[attachment=7784]

Outline.
Introduction
Types of lightening strokes
Lightening protection system
What is LFA-M?
Block Diagram
Design of LFA-M
How LFA-M protects the system?
Advantages
Disadvantages

Lightening…
What is it…?
Takes place when clouds are charged to a high potential
Electrical discharge between a cloud and earth
A huge spark...

Types of Lightening Strokes...
Direct stroke
Indirect stroke
Lightening - Direct Stroke
Lightening discharge is directly from a cloud to overhead line.

From the line, current path may be over at the ground.

The over voltage setup due to the stroke may be large enough to flashover this path directly to the ground.
Lightening - Indirect Stroke
Results from electro statically induced charges on the conductors.

(+ve) ly charged cloud induces (-ve) charge right under the cloud on the line and (+ve) charge away from it.

When cloud discharges to earth, (-ve) charge rushes along both directions in form of travelling wave.


Lightening protection system
A system designed to protect a structure from damage due to lightening strikes.

Intercepts such strikes and safely passes their extremely high voltage currents to “ground".

Provides a low-impedance path for the lightning current to lessen the heating effect.
Lightening protection system...
Traditional Designs...

Majority of nowadays- traditional “Franklin System”-providing low impedance path

“Franklin System”-A system of
lightning protection conductors
lightning rods -installed on the roof of the building to intercept any lightning before it strikes the building.

This has 3 main parts.
The roof circuit
Interconnection to grounding electrodes
Grounding electrodes

Lightening protection system...
Non-traditional Designs...

Aim is to reduce the number of air terminals required by a traditional Franklin-type system.
Reduce the overall cost of the protection system.
Mainly in two categories.
Systems that provide an increased zone of protection
Systems that eliminate lightning strikes altogether.



Reply
#6
[attachment=11297]
Lightning Protection
Facts about Lightning

A strike can average 100 million volts of electricity
Current of up to 100,000 amperes
Can generate 54,000 oF
Lightning strikes somewhere on the Earth every second
Kills 100 US residents per year
Lightning Doesn’t Go Straight Down
What Does This Mean?
Lightning can strike ground up to ten miles from a storm (Lightning out of the blue)
There is an average of 2-3 miles between strikes
So how can we tell how far away lightning has struck?
Use The Five Second Rule
Light travels at about 186,291 miles/second
Sound travels at only 1,088 feet/second
You will see the flash of lightning almost immediately
5280/1088= 4.9
About 5 seconds for sound to travel 1 mile
Stepped Leader
Streamers
Four Main Features of Lightning Protection
1) Air terminal
2) Conductors
3) Ground termination
4) Surge protection
Air Terminal and Conductors
Grounding Rod
Surge Protection Is A Must
Effects Of Lightning

Reply
#7
[attachment=14199]
1. INTRODUCTION
A new simple, effective and inexpensive method for lightning protection of medium voltage overhead distribution line is using long flashover arresters (LFA). A new long flashover arrester model has been developed. It is designated as LFA-M. It offers great number of technical and economical advantages. The important feature of this modular long flashover arrester (LFA-M) is that it can be applied for lightning protection of overhead distribution line against both induced overvoltages and direct lightning strokes. The induced over voltages can be counteracted by installing a single arrester on an overhead line support (pole). For the protection of lines against direct lightning strokes, the arresters are connected between the poles and all of the phase conductors in parallel with the insulators.
2. LIGHTNING
2.1 WHAT IS LIGHTNING ?

Lightning is an electrical discharge between cloud and the earth, between clouds or between the charge centers of the same cloud. Lightning is a huge spark and that take place when clouds are charged to at a high potential with respect to earth object (e.g. overhead lines) or neighboring cloud that the dielectric strength of the neighboring medium(air) is destroyed.
2.2 TYPES OF LIGHTNING STROKES
There are two main ways in which the lightning may strike the power system . They are
1. Direct stroke
2. Indirect stroke
DIRECT STROKE
In direct stroke, the lightning discharge is directly from the cloud to the an overhead line. From the line, current path may be over the insulators down to the pole to the ground. The over voltage set up due to the stroke may be large enough to flashover this path directly to the ground. The direct stroke can be of two types
1. stroke A
2. stroke B
In stroke A, the lightning discharge is from the cloud to the subject equipment(e.g. overhead lines). The cloud will induce a charge of opposite sign on the tall object. When the potential between the cloud and line exceed the breakdown value of air, the lightning discharge occurs between the cloud and the line.
In stroke B the lightning discharge occurs on the overhead line as the result of stroke A between the clouds. There are three clouds P,Q and R having positive, negative and positive charge respectively. Charge on the cloud Q is bound by cloud R.If the cloud P shift too nearer to cloud Q,Then lightning discharge will occur between them and charges on both these cloud disappear quickly. The result is that charge on cloud R suddenly become free and it then discharges rapidly to earth, ignoring tall object.
INDIRECT STROKE
Indirect stroke result from eletrostatically induced charges on the conductors due to the presence of charged cloud. If a positively charged cloud is above the line and induces a negative charge on the line by electrostatic induction. This negative charge however will be only on that portion on the line right under the cloud and the portion of the line away from it will be positively charged. The induced positive charge leaks slowly to earth. When the cloud discharges to earth or to another cloud, negative charge on the wire is isolated as it can not flow quickly to earth over the insulator. The result is that negative charge rushes along the line is both directions in the form of traveling wave. Majority of the surges in a transmission lines are caused by indirect lightning stroke.
3. THE LFA PRINCIPLE
When a lightning surge gets to an insulator, the insulator may flashover depending on the overvoltage value and insulation level of the line. Probability of power arc flow (PAF) depends on many parameters: nominal voltage of the line Unom, length of the flashover path L, moment at which lightning stroke occurred, lightning current magnitude, line parameters, etc. It was found that the main factor, which determines the probability of PAF, is the mean gradient of operational voltage along the flashover path.
E = Uph/L
Where Uph = Unom /3 =phase voltage, kV;
L = length of flashover,
The probability of PAF sharply decreases with a decrease in E. An analysis of available data on spark over discharge transition to PAF concluded that for E=7 to 10 kV/m probability of PAF is practically zero. The flashover length, L is greater for lines with wooden structures rather than steel or concrete structures, because wooden Cross-arm increases the flashover path. As a result probability of PAF for wooden structures is sufficiently lower than for steel or concrete supports. From the short analysis presented above, it is clear that it is possible to improve the protection against lightning by increasing the length of lightning flashover path. The suggested LFA accomplishes this principle. The LFA's length may be several times greater than that of an insulator (string, etc.). Due to a special inner structure the LFA impulse flashover voltage is lower than that of the insulator and when subjected to lightning overvoltage the LFA will flashover before the insulator.
Reply
#8
PRESENTED BY
DEEPAK PALSAVDIYA

[attachment=14781]
INTRODUCTION
A new simple, effective and inexpensive method for lightning protection of medium voltage overhead distribution line is using “Long Flashover Arresters” (LFA).
The important feature of this modular Long Flashover Arrester (LFA-M) is that it can be applied for lightning protection of overhead distribution line against both induced overvoltage and direct lightning strokes
WHAT IS LIGHTNING STROKE ?
Lightning is an electrical discharge between cloud and the earth, between clouds or between the charge centers of the same cloud.
Lightning is a huge spark and that take place when clouds are charged to at a high potential with respect to earth object (e.g. overhead lines) or neighboring cloud that the dielectric strength of the neighboring medium(air) is destroyed
TYPES OF LIGHTNING STROKES
DIRECT STROKE
INDIRECT STROKE
DIRECT STROKE
Lightning discharge is directly from cloud to overhead line.
From the line, current path may be over the insulators down to the pole to the ground.
The over voltage set up due to the stroke may be large enough to flashover this path directly to the ground
DIRECT STROKE- types
STROKE-A -The lightning discharge is from the cloud to the subject equipment(e.g. overhead lines).
The cloud will induce a charge of opposite sign on the tall object.
When the potential between the cloud and line exceed the breakdown value of air, the lightning discharge occurs between the cloud and the line.
STROKE-B – Lightning discharge occurs on overhead line due to stroke-A.
INDIRECT STROKE
Results from electro statically induced charges on the conductors.
(+ve) ly charged cloud induces (-ve) charge right under the cloud on the line and (+ve) charge away from it.
When cloud discharges to earth, (-ve) charge rushes along both directions in form of travelling wave.
Most common
What is LFA-M?
Long flashover arrestors are those devices which capture the high voltage sparks resulting out of lightening.
”M” indicates that LFA-M is for the protection of medium overhead transmission lines.
It can be applied for lightning protection of overhead distribution line against both induced over voltages and direct lightning strokes.
The induced over voltages can be counteracted by installing a single arrester on an overhead line support (pole).
For the protection of lines against direct lightning strokes, the arresters are connected between the poles and all of the phase conductors in parallel with the insulators.
BLOCK DIAGRAM
ff
DESIGN OF LFA-M
An LFA-M arrester consists of two cables like pieces. Each cable piece has a semi conductive core of resistance R
The cable pieces are arranged so as to form three flashover modules 1,2,3 as shown in figure. Semi conductive core of upper piece, whose resistance is R
How does LFA-M protect the overhead lines?
First, a lightning impulse causes a spark over of the spark gaps
Next, the semiconducting core of the upper cable piece, whose resistance , carries the high potential to the surface of the lower piece at its middle. Similarly, the semiconducting core of the lower piece of the same resistance applies the low potential 0 to the surface of the upper piece, also at its center.
Thus the total voltage is applied to each flashover module at the same moment, and all the three flashover modules 1, 2 and 3 are assured conditions for simultaneous initiation of creeping discharges which,with respective modules flashed over, develop a single long flashover channel
THE LFA PRINCIPLE
Probability of power arc flow (PAF) depends on many parameters: nominal voltage of the line Unom, length of the flashover path L.
E=Uph/L, where Uph=Unom/{3^(1/2)} =Phase Voltage(KV); L=Length Of Flashover.
The probability of PAF sharply decreases with a decrease in E.
An analysis of available data on spark over discharge transition to PAF concluded that for E=7 to 10 kV/m probability of PAF is practically zero.
LFA LOOP-TYPE
ADVANTEGE

LFA-Ls help avoid both conductor burnouts and overhead power lines outages caused by lightning induced overvoltages.
Extend the working life of high voltage circuit breakers.
Protect electric networks against arc overvoltage's.
Cannot be destroyed by lightning currents and power follow currents as metal oxide arresters, gapped silicon carbide arresters or expulsion tubes since currents are flowing outside of LFAs.
Are not stressed by operational voltage and do not require maintenance.
It protect from 0.4 to 10 kv power distribution
DISADVANTEGE
We can improve only it efficiency by increasing the number of flashover modules then only it can withstand very high over voltages
FUTURE EXPANSION
The LFA-M described here consists of three flashover modules. We can increases the flashover modules. If the number of flashover modules increases by increasing the cable pieces this LFA-M can be used for lightning protection of very high voltage lines.
When the modules increases the total arrester stressing is distributed these modules also. Then it can withstand very high over voltages
Conclusions
The LFA-M is a simple, low weight and convenient apparatus.
To protect a line against induced over voltages; a single arrestor must be mounted on a pole
The voltage-time characteristics of this modular arrestor assure reliable protection of medium voltage overhead lines against both induced over voltages and direct lightning strokes.
A long flashover arrestor (LFA) comprising three flashover modules using the creeping discharge effect was presented in this report. Its resistors assure application of the total arrestor-stressing voltage simultaneously to all the modules.
Reply
#9
to get information about the topic protection against overvoltages due to lightning full report ppt and related topic refer the page link bellow

http://studentbank.in/report-overvoltage...ay-systems

http://studentbank.in/report-lightning-p...ars-report

http://studentbank.in/report-lightning-p...5#pid52465

http://studentbank.in/report-lightning-p...fa-m--2066

http://studentbank.in/report-lightning-p...?pid=42563
Reply
#10

to get information about the topic lightning protection zones full report ppt and related topic refer the page link bellow

http://studentbank.in/report-lightning-protection-zones

http://studentbank.in/report-lightning-p...nes--16466

http://studentbank.in/report-surge-prote...ices--7894

http://studentbank.in/report-lightning-p...?pid=32457
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: lightning protection using lfa m ieee by, block diagram of lfa m, lightning protection using lfa m pdf ppt, rajlaxmi lottry, megaprojects of russia, lightning bolt solutions, lightning protection details,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  blast seminars report electronics seminars 6 14,561 09-09-2017, 04:08 PM
Last Post: jaseela123d
  surge current protection using superconductors full report computer science technology 13 26,847 16-03-2016, 12:03 AM
Last Post: computer science crazy
  Electronics seminars lists10 computer science crazy 169 91,158 28-03-2015, 10:07 AM
Last Post: seminar report asees
  gsm pdf and final seminars report suvendu9238 10 11,441 19-11-2014, 09:34 PM
Last Post: jaseela123d
  digital tv using vlsi system full report computer science topics 5 6,002 07-03-2014, 09:58 PM
Last Post: computer topic
  optical switching seminars report electronics seminars 7 10,234 29-04-2013, 10:55 AM
Last Post: computer topic
  memristor seminars report project report tiger 21 22,279 25-01-2013, 12:02 PM
Last Post: seminar details
Smile smart note taker seminars full report [email protected] 59 30,423 25-01-2013, 12:00 PM
Last Post: seminar details
  iris scanning seminars report electronics seminars 7 11,490 17-12-2012, 11:36 AM
Last Post: seminar details
  IMAGE AUTHENTICATION TECHNIQUES seminars report electronics seminars 6 8,553 15-11-2012, 12:24 PM
Last Post: seminar details

Forum Jump: