Fuzzy Logic


In this context, FL is a problem-solving control system methodology that lends itself to implementation in systems ranging from simple, small, embedded micro-controllers to large, networked, multi-channel PC or workstation-based data acquisition and control systems. It can be implemented in hardware, software, or a combination of both. FL provides a simple way to arrive at a definite conclusion based upon vague, ambiguous, imprecise, noisy, or missing input information.

FL's approach to control problems mimics how a person would make decisions, only much faster.
As the complexity of a system increases, it becomes more difficult and eventually impossible to make a precise statement about its behavior, eventually arriving at a point of complexity where the fuzzy logic method born in humans is the only way to get at the problem.


The concept of Fuzzy Logic (FL) was conceived by Lotfi Zadeh, a professor at the University of California at Berkley, and presented not as a control methodology, but as a way of processing data by allowing partial set membership rather than crisp set membership or non-membership. This approach to set theory was not applied to control systems until the 70's due to insufficient small-computer capability prior to that time. Professor Zadeh reasoned that people do not require precise, numerical information input, and yet they are capable of highly adaptive control. If feedback controllers could be programmed to accept noisy, imprecise input, they would be much more effective and perhaps easier to implement. Unfortunately, U.S. manufacturers have not been so quick to embrace this technology while the Europeans and Japanese have been aggressively building real products around it.

How is FL different from conventional control methods?

FL incorporates a simple, rule-based IF X AND Y THEN Z approach to a solving control problem rather than attempting to model a system mathematically. The FL model is empirically-based, relying on an operator's experience rather than their technical understanding of the system. For example, rather than dealing with temperature control in terms such as "SP =500F", "T <1000F", or "210C <TEMP <220C", terms like "IF (process is too cool) AND (process is getting colder) THEN (add heat to the process)" or "IF (process is too hot) AND (process is heating rapidly) THEN (cool the process quickly)" are used. These terms are imprecise and yet very descriptive of what must actually happen. Consider what you do in the shower if the temperature is too cold: you will make the water comfortable very quickly with little trouble. FL is capable of mimicking this type of behavior but at very high rate.

How does Fl work?

FL requires some numerical parameters in order to operate such as what is considered significant error and significant rate-of-change-of-error, but exact values of these numbers are usually not critical unless very responsive performance is required in which case empirical tuning would determine them. For example, a simple temperature control system could use a single temperature feedback sensor whose data is subtracted from the command signal to compute "error" and then time-differentiated to yield the error slope or rate-of-change-of-error, hereafter called "error-dot". Error might have units of degs F and a small error considered to be 2F while a large error is 5F. The "error-dot" might then have units of degs/min with a small error-dot being 5F/min and a large one being 15F/min. These values don't have to be symmetrical and can be "tweaked" once the system is operating in order to optimize performance. Generally, FL is so forgiving that the system will probably work the first time without any tweaking.

Important Note..!

If you are not satisfied with above reply ,..Please


So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: dg placement fuzzy logic, fuzzy logic for a transformer, fuzzy logic related seminar topics, fuzzy logic baesd electrical projects, fuzzy atmega32, fuzzy logic ieee projects 2012, fuzzy logic in mixie,

Quick Reply
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  OPTIMIZATION OF UPFC USING FUZZY LOGIC projectsofme 2 9,047 05-04-2013, 11:42 AM
Last Post: computer topic
  PH Control Technique using Fuzzy Logic computer science crazy 1 3,687 16-03-2012, 10:23 AM
Last Post: seminar paper
  FUZZY LOGIC CONTROL OF A SWITCHED RELUCTANCE MOTOR projectsofme 1 2,408 29-02-2012, 10:16 AM
Last Post: seminar paper
  Induction Motor Speed Control using Fuzzy Logic Controller full report seminar topics 1 5,782 13-02-2012, 03:31 PM
Last Post: seminar paper
  EARLY OUTPUT LOGIC BASED FILTER BANK STRUCTURE seminar surveyer 0 1,020 29-12-2010, 10:56 AM
Last Post: seminar surveyer
  Fuzzy - Based Representative Quality Power Factor for Unbalanced Three - Phase Sy Wifi 0 1,089 28-10-2010, 10:28 AM
Last Post: Wifi
  Low Power, Energy- efficient Domino Logic Circuits project report helper 0 1,439 18-10-2010, 01:14 PM
Last Post: project report helper
  Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive project report helper 0 901 13-10-2010, 03:02 PM
Last Post: project report helper
  A NOVAL APPROACH OF INDUCTION MOTOR TORQUE CONTROL USING FUZZY seminar surveyer 0 1,230 13-10-2010, 01:19 PM
Last Post: seminar surveyer
  Dynamic Logic Circuits project report helper 0 1,506 01-10-2010, 11:02 AM
Last Post: project report helper

Forum Jump: