EYEWRITER
#1

Presented by:
M.Madhuri

[attachment=10737]
Importance of EYE WRITER
How do you communicate when your brain is active but your body isn't? The EyeWriter, a collaboration from the Ebeling Group, the Not Impossible Foundation and Graffiti Research Lab, uses low-cost eye-tracking glasses and open-source software to allow people suffering from any kind of neuromuscular syndrome to write and draw by tracking their eye movement and translating it to lines on a screen.
The device was created for Tony "Tempt" Quan, an L.A.-based graffiti artist who was diagnosed with Lou Gehrig's disease in 2003. After trying the Eye Writer — the first time he'd drawn anything since he was fully paralyzed — Quan said, "It feels like taking a breath after being held underwater for five minutes."
Eye tracking:
It is the process of measuring either the point of gaze (where we are looking) or the motion of an eye relative to the head. An eye tracker is a device for measuring eye positions and eye movement. Eye trackers are used in research on the visual system, in psychology, in cognitive linguistics and in product design. There are a number of methods for measuring eye movement. The most popular variant uses video images from which the eye position is extracted. Other methods use search coils or are based on the electrooculogram.
History:
In the 1800s, studies of eye movement were made using direct observations. In 1879 in Paris, Louis Émile Javal .This observation raised important questions about reading, which were explored during the 1900s: On which words do the eyes stop? For how long? When does it regress back to already seen words?
This is the typical pattern of eye movement during reading. The eyes never move smoothly over still text.
Edmund Huey built an early eye tracker, using a sort of contact lens with a hole for the pupil. The lens was connected to an aluminum pointer that moved in response to the movement of the eye. Huey studied and quantified regressions (only a small proportion of saccades are regressions), and show that some words in a sentence are not fixated.
The first non-intrusive eye trackers were built by Guy Thomas Buswell in Chicago, using beams of light that were reflected on the eye and then recording them on film. Buswell made systematic studies into reading and picture viewing.
In the 1950s, Alfred L. Yarbus did important eye tracking research and his 1967 book is very highly quoted. He showed the task given to a subject has a very large influence on the subject's eye movement. He also wrote about the relation between fixations and interest:
"All the records show conclusively that the character of the eye movement is either completely independent of or only very slightly dependent on the material of the picture and how it was made, provided that it is flat or nearly flat."
The cyclical pattern in the examination of pictures "is dependent not only on what is shown on the picture, but also on the problem facing the observer and the information that he hopes to gain from the picture."
This study by Yarbus (1967) is often referred to as evidence on how the task given to a person influences his or her eye movement.
"Records of eye movements show that the observer's attention is usually held only by certain elements of the picture. Eye movement reflects the human thought processes; so the observer's thought may be followed to some extent from records of eye movement (the thought accompanying the examination of the particular object). It is easy to determine from these records which elements attract the observer's eye (and, consequently, his thought), in what order, and how often."
"The observer's attention is frequently drawn to elements which do not give important information but which, in his opinion, may do so. Often an observer will focus his attention on elements that are unusual in the particular circumstances, unfamiliar, incomprehensible, and so on."
"When changing its points of fixation, the observer's eye repeatedly returns to the same elements of the picture. Additional time spent on perception is not used to examine the secondary elements, but to reexamine the most important elements."
In the 1970s, eye tracking research expanded rapidly, particularly reading research. A good overview of the research in this period is given by Rayner.
In 1980, Just and Carpenter formulated the influential Strong eye-mind Hypothesis, the hypothesis that "there is no appreciable lag between what is fixated and what is processed". If this hypothesis is correct, then when a subject looks at a word or object, he or she also thinks about (process cognitively), and for exactly as long as the recorded fixation. The hypothesis is often taken for granted by beginning eye tracker researchers.
During the 1980s, the eye-mind hypothesis was often questioned in light of covert attention, the attention to something that one is not looking at, which people often do. If covert attention is common during eye tracking recordings, the resulting scan path and fixation patterns would often show not where our attention has been, but only where the eye has been looking, and so eye tracking would not indicate cognitive processing.
According to Hoffman, current consensus is that visual attention is always slightly (100 to 250 ms) ahead of the eye. But as soon as attention moves to a new position, the eyes will want to follow.
We still cannot infer specific cognitive processes directly from a fixation on a particular object in a scene. For instance, a fixation on a face in a picture may indicate recognition, liking, dislike, puzzlement etc. Therefore eye tracking is often coupled with other methodologies, such as introspective verbal protocols.
Tracker types:
Eye trackers measure rotations of the eye in one of several ways, but principally they fall into three categories:
One type uses an attachment to the eye, such as a special contact lens with an embedded mirror or magnetic field sensor, and the movement of the attachment is measured with the assumption that it does not slip significantly as the eye rotates. Measurements with tight fitting contact lenses have provided extremely sensitive recordings of eye the dynamics and underlying physiology of eye movement.
The second broad category uses some non-contact, optical method for measuring eye motion. Light, typically infrared, is reflected from the eye and sensed by a video camera or some other specially designed optical sensor. The information is then analyzed to extract eye rotation from changes in reflections. Video based eye trackers typically use the corneal reflection (the first Purkinje image) and the center of the pupil as features to track over time. A more sensitive type of eye tracker, the dual-Purkinje eye tracker, uses reflections from the front of the cornea (first Purkinje image) and the back of the lens (fourth Purkinje image) as features to track. A still more sensitive method of tracking is to image features from inside the eye, such as the retinal blood vessels, and follow these features as the eye rotates. Optical methods, particularly those based on video recording, are widely used for gaze tracking and are favored for being non-invasive and inexpensive.
The third category uses electric potentials measured with electrodes placed around the eyes. The eyes are the origin of a steady electric potential field, which can also be detected in total darkness and if the eyes are closed. It can be modeled to be generated by a dipole with its positive pole at the cornea and its negative pole at the retina. The electric signal that can be derived using two pairs of contact electrodes placed on the skin around one eye is called Electrooculogram (EOG). If the eyes move from the centre position towards the periphery, the retina approaches one electrode while the cornea approaches the opposing one. This change in the orientation of the dipole and consequently the electric potential field results in a change in the measured EOG signal. Inversely, by analyzing these changes in eye movement can be tracked. Due to the discrete information given by the common electrode setup two separate movement components – a horizontal and a vertical – can be identified. A third EOG component is the radial EOG channel, which is the average of the EOG channels referenced to some posterior scalp electrode. This radial EOG channel is sensitive to the saccadic spike potentials stemming from the extra-ocular muscles at the onset of saccades, and allows reliable detection of even miniature saccades.
Due to potential drifts and variable relations between the EOG signal amplitudes and the saccade sizes make it challenging to use EOG for measuring slow eye movement and detecting gaze direction. EOG is, however, a very robust technique for measuring saccadic eye movement associated with gaze shifts and detecting blinks. Contrary to video-based eye-trackers, EOG allows recording of eye movements even with eyes closed, and can thus be used in sleep research. It is a very light-weight approach that, in contrast to current video-based eye trackers, only requires very low computational power, works under different lighting conditions and can be implemented as an embedded, self-contained wearable system. It is thus the method of choice for measuring eye movement in mobile daily-life situations and REM phases during sleep.
Technologies and techniques:
The most widely used current designs are video-based eye trackers. A camera focuses on one or both eyes and records their movement as the viewer looks at some kind of stimulus. Most modern eye-trackers use contrast to locate the center of the pupil and use infrared and near-infrared non-collimated light to create a corneal reflection (CR). The vector between these two features can be used to compute gaze intersection with a surface after a simple calibration for an individual.
Two general types of eye tracking techniques are used:
• Bright Pupil
• Dark Pupil
Their difference is based on the location of the illumination source with respect to the optics. If the illumination is coaxial with the optical path, then the eye acts as a retro-reflector as the light reflects off the retina creating a bright pupil effect similar to red eye. If the illumination source is offset from the optical path, then the pupil appears dark because the retro-reflection from the retina is directed away from the camera.
Bright Pupil tracking creates greater iris/pupil contrast allowing for more robust eye tracking with all iris pigmentation and greatly reduces interference caused by eyelashes and other obscuring features. It also allows for tracking in lighting conditions ranging from total darkness to very bright. But bright pupil techniques are not effective for tracking outdoors as extraneous IR sources interfere with monitoring.
Eye tracking setups vary greatly; some are head-mounted, some require the head to be stable (for example, with a chin rest), and some function remotely and automatically track the head during motion. Most use a sampling rate of at least 30 Hz. Although 50/60 Hz is most common, today many video-based eye trackers run at 240, 350 or even 1000/1250 Hz, which is needed in order to capture the detail of the very rapid eye movement during reading, or during studies of neurology
Eye movement is typically divided into fixations and saccades, when the eye gaze pauses in a certain position, and when it moves to another position, respectively. The resulting series of fixations and saccades is called a scan path. Most information from the eye is made available during a fixation, but not during a saccade. The central one or two degrees of the visual angle (the fovea) provide the bulk of visual information; the input from larger eccentricities (the periphery) is less informative. Hence, the locations of fixations along a scan path show what information loci on the stimulus were processed during an eye tracking session. On average, fixations last for around 200 ms during the reading of linguistic text, and 350 ms during the viewing of a scene. Preparing a saccade towards a new goal takes around 200 ms.
Scan paths are useful for analyzing cognitive intent, interest, and salience. Other biological factors (some as simple as gender) may affect the scan path as well. Eye tracking in HCI typically investigates the scan path for usability purposes, or as a method of input in gaze-contingent displays, also known as gaze-based interfaces
Reply
#2
ABSTRACT
How do you communicate when your brain is active but your body isn't? The EyeWriter, a collaboration from the Ebeling Group, the Not Impossible Foundation and Graffiti Research Lab, uses low-cost eye-tracking glasses and open-source software to allow people suffering from any kind of degenerative neuromuscular syndrome like ALS(Amyotrophic Lateral Sclerosis) to write and draw by tracking their eye movement and translating it to lines on a screen. The device was created for Tony "Tempt" Quan, an L.A.-based graffiti artist who was diagnosed with Lou Gehrig's disease in 2003. After trying the EyeWriter the first time he'd drawn anything since he was fully paralyzed, Quan said, "It feels like taking a breath after being held underwater for five minutes."
Eye tracking is the process of measuring either the point of gaze (where we are looking) or the motion of an eye relative to the head and hence is a device for measuring eye positions and eye movement. There are a number of methods for measuring eye movement. The most popular variant uses video images from which the eye position is extracted. Other methods use search coils or are based on the electrooculogram.
Foveated imaging is a digital image processing technique in which the image resolution, or amount of detail, varies across the image according to one or more "fixation points." A fixation point indicates the highest resolution region of the image and corresponds to the center of the eye's retina, the fovea. The resulting data can be statistically analyzed and graphically rendered to provide evidence of specific visual patterns. By examining fixations, saccades, pupil dilation, blinks and a variety of other behaviors researchers can determine a great deal about the effectiveness of a given medium or product.
A wide variety of disciplines use eye tracking techniques, including cognitive science, psychology (notably psycholinguistics, the visual world paradigm), human-computer interaction (HCI), marketing research and medical research (neurological diagnosis). Specific applications include the tracking eye movement in language reading, music reading, human activity recognition, the perception of advertising, and the playing of sport.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: ppt on eyewriter, ieee report on eyewriter, eyewriter ppt free download, pdf articles on eyewriter, eyewriter seminar paper, eyewriter seminar, riemann hypothesis,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Forum Jump: