variable valve timing full report
#2



Variable valve timing

Overview
Piston engines normally use poppet valves for intake and exhaust. These are driven (directly or indirectly) by cams on a camshaft. The cams open the valves (lift) for a certain amount of time (duration) during each intake and exhaust cycle. The timing of the valve opening and closing is also important. The camshaft is driven by the crankshaft through timing belts, gears or chains.
The profile, or position and shape of the cam lobes on the shaft, is optimized for a certain engine revolutions per minute (RPM), and this tradeoff normally limits low-end torque, or high-end power. VVT allows the cam timing to change, which results in greater efficiency and power, over a wider range of engine RPMs.
At high engine speeds, an engine requires large amounts of air. However, the intake valves may close before all the air has been given a chance to flow in, reducing performance. On the other hand, if the cam keeps the valves open for longer periods of time, as with a racing cam, problems start to occur at the lower engine speeds. This will cause unburnt fuel to exit the engine since the valves are still open. This leads to lower engine performance and increased emissions. For this reason, pure racing engines cannot idle at the low speeds (around 800 rpm) expected of a road car, and idle speeds of 2,000 rpm are not unusual.
Pressure to meet environmental goals and fuel efficiency standards is forcing car manufacturers to turn to VVT as a solution. Most simple VVT systems advance or retard the timing of the intake or exhaust valves. Others (like Honda's VTEC) switch between two sets of cam lobes at a certain engine RPM. Furthermore Honda's i-VTEC can alter intake valve timing continuously.

History

Steam engines
The first variable valve timing systems came into existence in the nineteenth century on steam engines. Stephenson valve gear, as used on early steam locomotives, supported variable cutoff, that is, changes to the time at which the admission of steam to the cylinders is cut off during the power stroke. Early approaches to variable cutoff coupled variations in admission cutoff with variations in exhaust cutoff. Admission and exhaust cutoff were decoupled with the development of the Corliss valve. These were widely used in constant speed variable load stationary engines, with admission cutoff, and therefore torque, mechanically controlled by a centrifugal governor and trip valves. As poppet valves came into use, simplified valve gear using a camshaft came into use. With such engines, variable cutoff could be achieved with variable profile cams that were shifted along the camshaft by the governor.this is now coming in system.[1]
Aircraft
Some versions of the Bristol Jupiter radial engine of the early 1920s incorporated variable valve timing gear, mainly to vary the inlet valve timing in connection with higher compression ratios.[2] The Lycoming R-7755 engine had a Variable Valve Timing system consisting of two cams that can be selected by the pilot. One for take off, pursuit and escape, the other for economical cruising.


for more ::->
http://en.wikipediawiki/Centrifugal_governor
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: intelligent variable valve timing and lift electronic control, download free ppt of variable timing valve train, camshafts, bmw 0x507c, pdf report on variable timing valve train engine, vvt i aftermarket, valve timing diagram of dtsi engine,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
RE: variable valve timing full report - by project report helper - 19-10-2010, 05:43 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  NanoTechnology (Download Full Seminar Report) Computer Science Clay 39 57,105 16-08-2018, 01:41 PM
Last Post: pradeepkumar.M
  magnetic refrigeration full report project report tiger 46 45,807 20-06-2018, 11:43 PM
Last Post: Guest
  TQM Total quality management full report project report tiger 5 14,146 18-09-2016, 08:41 PM
Last Post: velraj
  thermoacoustic refrigeration full report project report tiger 12 19,946 06-03-2015, 06:28 PM
Last Post: Guest
  the gurney flap full report project report tiger 1 3,608 04-12-2014, 02:02 PM
Last Post: pricemuzDet
  exhaust gas recirculation full report project report tiger 8 10,909 05-11-2014, 09:06 PM
Last Post: jaseela123d
  IMPROVEMENT OF THERMAL EFFICIENCY BY RECOVERY OF HEAT FROM IC ENGINE EXHAUST full rep project report tiger 7 8,578 18-10-2014, 10:35 PM
Last Post: jaseela123d
  reverse engineering full report project report tiger 3 6,511 11-10-2014, 10:49 PM
Last Post: Guest
  sensotronic brake control full report computer science technology 13 24,143 07-10-2014, 10:01 PM
Last Post: seminar report asees
  anti lock braking system full report project report tiger 6 8,586 23-09-2014, 07:25 PM
Last Post: seminar report asees

Forum Jump: