Quantum teleportation
#3
please download following documents, for getting introduction and report
[attachment=483]
[attachment=484]
[attachment=3178]


SEMINAR ON TELEPORTATION

Presented by:

IQxplorer


INTRODUCTION:-


Ever since the wheel was invented more than 5,000 years ago, people have been inventing new ways to

travel faster from one point to another.
To avoid the problem of covering a physical distance and to minimise the time ,there are scientists

working right now on such a method of travel, combining properties of telecommunications and

transportation to achieve a system called teleportation


TELEPORTATION:-

Teleportation involves dematerializing an bject at one point, and sending the details of that

object's precise atomic configuration to another location, where it will be reconstructed.
What this means is that time and space could be eliminated from travel -- we could be transported to

any location instantly, without actually crossing a physical distance.
In 1993, the idea of teleportation moved out of the realm of science fiction and into the world of

theoretical possibility. It was then that physicist Charles Bennett and a team of researchers at IBM

confirmed that quantum teleportation was possible, but only if the original object being teleported

was destroyed.
This revelation, first announced by Bennett at an annual meeting of the American Physical Society in

March 1993


WHERE TELEPORTATION IS POSSIBLE:-

TELEPORTATION will be explained with the following objects:
Experiments on photon
Human teleportation
Quantum teleportation




PHOTON EXPERIMENTS:-

In 1998, physicists at the California Institute of Technology (Caltech), along with two European

groups, turned the IBM ideas into reality by successfully teleporting a photon, a particle of energy

that carries light.
The Caltech group was able to read the atomic structure of a photon, send this information across 1

meter (3.28 feet) of coaxial cable and create a replica of the photon.
In performing the experiment, the Caltech group was able to get around the Heisenberg Uncertainty

Principle, the main barrier for teleportation of objects larger than a photon.
This principle states that you cannot simultaneously know the location and the speed of a particle.

In order to teleport a photon without violating the Heisenberg Principle, the Caltech physicists

used a phenomenon known as entanglement.




ENTANGLEMENT:-

Entanglement means achieving the properties one photon by another photon.
In entanglement, at least three photons are needed to achieve teleportation:
Photon A:The photon to be teleported
Photon B:The transporting photon
Photon C:The photon that is entangled with photon B
If researchers tried to look too closely at photon A without entanglement, they would bump it, and

thereby change it. By entangling photons B and C, researchers can extract some information about

photon A, and the remaining information would be passed on to B by way of entanglement, and then on

to photon C. When researchers apply the information from photon A to photon C, they can create an

exact replica of photon A. However, photon A no longer exists as it did before the information was

sent to photon C.




PRINCIPLE OF ENTANGLEMENT :-

Two photons E1 & K and a beam spliters (it splits a light into two equal parts)
are required
We direct one of the entangled photons, say E1, to the beam splitter.
Meanwhile, we prepare another photon with a polarization of 45 degree , and direct it to the same

beam splitter from the other side, as shown.


The E1 photon incident from above will be reflected by the beam splitter some of the time and will

be transmitted some of the time. Similarly for the K photon that is incident from below. So

sometimes both photons will end up going up and to the right as shown.
However, in the case of one photon going upwards and the other going downwards, we can not tell

which is which. Perhaps both photons were reflected by the beam splitter, but perhaps both were

transmitted.





HUMAN TELEPORTATION:-

For a person to be transported, a machine would have to be built that can pinpoint and analyze all

of the 10(to the power 28 ) atoms that make up the human body. That's a more than a trillion

trillion atoms. This machine would then have to send this information to another location, where the

person's body would be reconstructed with exact precision. Molecules couldn't be even a millimeter

out of place, lest the person arrive with some severe neurological or physiological defect.




HOW IT BE POSSIBLE:-

Teleportation would combining genetic cloning with digitization. In this biodigital cloning, tele-

travelers would have to die, in a sense.
Their original mind and body would no longer exist. Instead, their atomic structure would be

recreated in another location, and digitization would recreate the travelers' memories, emotions,

hopes and dreams. So the travelers would still exist, but they would do so in a new body, of the

same atomic structure as the original body, programmed with the same information.




QUANTUM TELEPORTATION:-

In quantum teleportation the original object is scanned in such a way as to extract all the

information from it, then this information is transmitted to the receiving location and used to

construct the replica, not necessarily from the actual material of the original, but perhaps from

atoms of the same kinds, arranged in exactly the same pattern as the original. A teleportation

machine would be like a fax machine, except that it would work on 3-dimensional objects as well as

documents.
it would produce an exact copy rather than an approximate facsimile, and it would destroy the

original in the process of scanning it.

In 1993 an international group of six scientists, including IBM Fellow Charles H. Bennett, confirmed

the intuitions of the majority of science fiction writers by showing that perfect teleportation is

indeed possible in principle, but only if the original is destroyed.

This six scientists found a way to scan out part of the information from an object A, which one

wishes to teleport, while causing the remaining, unscanned, part of the information to pass, into

another object C which has never been in contact with A. Later, by applying to C a treatment

depending on the scanned-out information, it is possible to maneuver C into exactly the same state

as A was in before it was scanned. A itself is no longer in that state, having been thoroughly

disrupted by the scanning, so what has been achieved is teleportation, not replication.
. In quantum teleportation two objects B and C are first brought into contact and then separated.

Object B is taken to the sending station, while object C is taken to the receiving station. At the

sending station object B is scanned together with the original object A which one wishes to

teleport, yielding some information and totally disrupting the state of A and B. The scanned

information is sent to the receiving station, where it is used to select one of several treatments

to be applied to object C, thereby putting C into an exact replica of the former state of A.
This above figure compares conventional facsimile transmission with quantum teleportation (seen

previously). In conventional facsimile transmission the original is scanned, extracting partial

information about it, but remains more or less intact after the scanning process.
The scanned information is sent to the receiving station, where it is imprinted on some raw material

(egg paper) to produce an approximate copy of the original




THE THEORY BEHIND QUANTUM TELEPORTATION:-

A & B are two entagled particles created in orthogonal state .
C be the particle that we wish to teleport .
In order to cause an entaglement between A & B, this simultaneously alters the quantum state of B

in such a way that when the classical information gleaned from analysis of A and C is applied to B ,

particle B becomes an exact replica of C.In the meantime , C has been totally disrupted and is no

longer in itâ„¢s original state





PRACTICAL APPLICATION:-

Physicists can already teleport tiny things, such as a beam of light or the angular spin of atomic

nuclei. But physicists caution that teleportation research is still in the early development stage.
But within 20 years, Laflamme said teleportation could be a fundamental step in the creation of

quantum computers, cryptography, and an emerging technology called "superdense coding," in which two

quantum bits could be transmitted for the price one.





CONCLUSION:-

But like all technologies, scientists are sure to continue to improve upon the ideas of

teleportation, to the point that we may one day be able to avoid such harsh methods.
One day, one of our descendents could finish up a work day at a space office above some far away

planet in a galaxy many light years from Earth, tell his or her wristwatch that it's time to beam

home for dinner on planet X below and sit down at the dinner table as soon as the words leave his

mouth.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: prayer in schools in texas, ppt on quantum teleportation, dareeyak teleport, teleportation disadvantages, qca papers 2012 quantum, what are the benefits to teleportation, original,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
Quantum teleportation - by computer science crazy - 24-02-2009, 12:34 AM
RE: Quantum teleportation - by disposable hero - 15-07-2009, 07:34 PM
RE: Quantum teleportation - by computer science crazy - 03-11-2009, 03:42 PM
RE: Quantum teleportation - by shashikantha - 26-03-2010, 01:26 PM
RE: Quantum teleportation - by pruthvikumar.123 - 18-03-2010, 05:50 PM
RE: Quantum teleportation - by seminar topics - 25-03-2010, 07:39 AM
RE: Quantum teleportation - by seminar-avatar - 26-03-2010, 06:21 PM
RE: Quantum teleportation - by project topics - 12-04-2010, 10:11 PM
RE: Quantum teleportation - by mahipal_rathore - 10-10-2010, 04:22 PM
RE: Quantum teleportation - by seminar surveyer - 12-01-2011, 12:01 PM
RE: Quantum teleportation - by seminar topics - 23-01-2011, 04:14 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  QUANTUM CRYPTOGRAPHY- MAKING CODE UNBREAKABLE seminar class 2 2,471 11-07-2013, 02:07 PM
Last Post: computer topic
  Teleportation computer science crazy 7 4,193 29-05-2013, 07:47 PM
Last Post: dan da gagan
  Quantum dot lasers computer science crazy 1 1,751 04-02-2012, 10:02 AM
Last Post: seminar addict
  Quantum Cryptography computer science crazy 5 7,007 19-01-2012, 11:05 AM
Last Post: seminar addict
  Seminar Report On QUANTUM CRYPTOGRAPHY Computer Science Clay 4 8,370 19-01-2012, 11:04 AM
Last Post: seminar addict
  quantum computing full report project report tiger 4 7,113 13-05-2011, 10:35 PM
Last Post: shocksharker
  Quantum Computers computer science crazy 1 2,448 19-03-2011, 10:01 AM
Last Post: pigannu
  Quantum Automata and Languages seminar class 0 1,213 10-03-2011, 10:52 AM
Last Post: seminar class
  Quantum Information Technology seminar class 0 1,433 26-02-2011, 11:51 AM
Last Post: seminar class
  Design and Optimization of Reversible BCD Adder/Subtractor Circuit for Quantum and Na seminar class 0 2,676 16-02-2011, 10:23 AM
Last Post: seminar class

Forum Jump: