The Atomic Battery
#2
[attachment=12394]
INTRODUCTION
A burgeoning need exists today for small, compact, reliable, lightweight and self-contained rugged power supplies to provide electrical power in such applications as electric automobiles, homes, industrial, agricultural, recreational, remote monitoring systems, spacecraft and deep-sea probes. Radar, advanced communication satellites and especially high technology weapon platforms will require much larger power source than today’s power systems can deliver. For the very high power applications, nuclear reactors appear to be the answer. However, for intermediate power range, 10 to 100 kilowatts (kW), the nuclear reactor presents formidable technical problems.
Because of the short and unpredictable lifespan of chemical batteries, however, regular replacements would be required to keep these devices humming. Also, enough chemical fuel to provide 100 kW for any significant period of time would be too heavy and bulky for practical use. Fuel cells and solar cells require little maintenance, and the latter need plenty of sun.
Thus the demand to exploit the radioactive energy has become inevitably high. Several methods have been developed for conversion of radioactive energy released during the decay of natural radioactive elements into electrical energy. A grapefruit-sized radioisotope thermo- electric generator that utilized heat produced from alpha particles emitted as plutonium-238 decay was developed during the early 1950’s.
Since then the nuclear has taken a significant consideration in the energy source of future. Also, with the advancement of the technology the requirement for the lasting energy sources has been increased to a great extent. The solution to the long term energy source is, of course, the nuclear batteries with a life span measured in decades and has the potential to be nearly 200 times more efficient than the currently used ordinary batteries. These incredibly long-lasting batteries are still in the theoretical and developmental stage of existence, but they promise to provide clean, safe, almost endless energy.
Unlike conventional nuclear power generating devices, these power cells do not rely on a nuclear reaction or chemical process do not produce radioactive waste products. The nuclear battery technology is geared towards applications where power is needed in inaccessible places or under extreme conditions.
The researchers envision its uses in pacemakers and other medical devices that would otherwise require surgery to repair or replace. Additionally, deep-space probes and deep-sea sensors, which are beyond the reach of repair, would benefit from such technology. In the near future this technology is said to make its way into commonly used day to day products like mobile and laptops and even the smallest of the devices used at home. Surely these are the batteries of the near future.
HISTORICAL DEVELOPMENTS
The idea of nuclear battery was introduced in the beginning of 1950, and was patented on March 3rd, 1959 to tracer lab. Even though the idea was given more than 30 years before, no significant progress was made on the subject because the yield was very less.
A radio isotope electric power system developed by inventor Paul Brown was a scientific break through in nuclear power. Brown’s first prototype power cell produced 100,000 times as much energy per gram of strontium -90(the energy source) than the most powerful thermal battery yet in existence. The magnetic energy emitted by the alpha and beta particles inherent in nuclear material. Alpha and beta particles are produced by the radio active decay of certain naturally occurring and man –made nuclear material (radio nuclides). The electric charges of the alpha and beta particles have been captured and converted to electricity for existing nuclear batteries, but the amount of power generated from such batteries has been very small.
Alpha and beta particles also posses kinetic energy, by successive collisions of the particles with air molecules or other molecules. The bulk of the R &D of nuclear batteries in the past has been concerned with this heat energy which is readily observable and measurable. The magnetic energy given off by alpha and beta particles is several orders of magnitude grater than the kinetic energy or the direct electric energy produced by these same particles. However, the myriads of tiny magnetic fields existing at any time cannot be individually recognized or measured. This energy is not captured locally in nature to produce heat or mechanical effects, but instead the energy escapes undetected.
Brown invented an approach to “organize” these magnetic fields so that the great amounts of otherwise unobservable energy could be harnessed. The first cell constructed (that melted the wire components) employed the most powerful source known, radium-226, as the energy source.
The main draw back of Mr. Brown’s prototype was its low efficiency, and the reason for that was when the radioactive material decays, many of the electrons lost from the semiconductor material. With the enhancement of more regular pitting and introduction better fuels the nuclear batteries are though to be the next generation batteries and there is hardly any doubt that these batteries will be available in stores within another decade.
ENERGY PRODUCTION MECHANISM
Betavoltaics

Betavoltacis is an alternative energy technology that promises vastly extended battery life and power density over current technologies. Betavoltaics are generators of electrical current, ineffect a form of a battery, which use energy from a radioactive source emitting beta particles (electrons). The functioning of a betavoltaics device is somewhat similar to a solar panel, which converts photons (light) into electric current.
Betavoltaic technique uses a silicon wafer to capture electrons emitted by a radioactive gas, such as tritium. It is similar to the mechanics of converting sunlight into electricity in a solar panel. The flat silicon wafer is coated with a diode material to create a potential barrier. The radition absorbed in the vicinity of and potiential barrier like a p-n junction or a metal-semiconductor contact would generate separate electron-hole pairs which inturn flow in an electric circuit due to the voltaic effect. Of course, this occurs to a varying degree in different materials and geometries.
A pictorial representation of a basic Betavoltaic conversion as shown in figure 1. Electrode A (P-region) has a positive potential while electrode B (N-region) is negative with the potential difference provided by me conventional means.
The junction between the two electrodes is comprised of a suitably ionisable medium exposed to decay particles emitted from a radioactive source.
The energy conversion mechanism for this arrangement involves energy flow in different stages:
Stage 1:- Before the radioactive source is introduced, a difference in potential between to electrodes is provided by a conventional means. An electric load RL is connected across the electrodes A and B. Although a potential difference exists, no current flows through the load RL because the electrical forces are in equilibrium and no energy comes out of the system. We shall call this ground state E0.
Stage 2:- Next, we introduce the radioactive source, say a beta emitter, to the system. Now, the energy of the beta particle Eb generates electron- hole pair in the junction by imparting kinetic energy which knocks electrons out of the neutral atoms. This amount of energy E1, is known as the ionization potential of the junction.
Stage 3:- Further the beta particle imparts an amount of energy in excess of ionization potential. This additional energy raises the electron energy to an elevated level E2. Of course the beta [particle dose not impart its energy to a single ion pair, but a single beta particle will generate as many as thousands of electron- hole pairs. The total number of ions per unit volume of the junction is dependent upon the junction material.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: atomic battary, rawat bhata atomic center recruitment, learned love atomic, atomic energy ppt download for school project, seminar atomic battery, zebra battery, 6v battery**f companies act 1956 for mba,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
The Atomic Battery - by Computer Science Clay - 07-06-2009, 01:36 AM
RE: The Atomic Battery - by seminar class - 19-04-2011, 02:55 PM
RE: The Atomic Battery - by [email protected] - 11-02-2012, 08:47 PM
RE: The Atomic Battery - by seminar paper - 13-02-2012, 12:34 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  The Atomic Battery mechanical wiki 4 2,950 26-08-2011, 10:18 AM
Last Post: seminar addict
  Energy Storage Scheme for Rail-guided Shuttle using Ultracapacitor and Battery project report helper 0 1,444 16-10-2010, 02:36 PM
Last Post: project report helper
  atomic force microscopy full report project report tiger 0 2,044 17-02-2010, 07:06 AM
Last Post: project report tiger

Forum Jump: