Pick and Place Robot
#4
PREPARED BY: -
Patel Boni S
Lad Satish P
Clind M.B

[attachment=11018]
ABSTRACT
Mankind has always strived to give life like qualities to its artifacts in an attempt to find substitutes for himself to carry out his orders and also to work in a hostile environment. The popular concept of a robot is of a machine that looks and works like a human being.
The industry is moving from current state of automation to Robotization, to increase productivity and to deliver uniform quality. The industrial robots of today may not look the least bit like a human being although all the research is directed to provide more and more anthropomorphic and humanlike features and super-human capabilities in these.
One type of robot commonly used in industry is a robotic manipulator or simply a robotic arm. It is an open or closed kinematic chain of rigid links interconnected by movable joints. In some configurations, links can be considered to correspond to human anatomy as waist, upper arm and forearm with joint at shoulder and elbow. At end of arm a wrist joint connects an end effector which may be a tool and its fixture or a gripper or any other device to work.
Here how a pick and place robot can be designed for a workstation where loading and packing of lead batteries is been presented. All the various problems and obstructions for the loading process has been deeply analyzed and been taken into consideration while designing the pick and place robot.
CHAPTER 1
INTRODUCTION

Robotics is the branch of engineering science & Technology related to robots, and their design, manufacture, application, and structural disposition. Robotics is related to electronics, mechanics, and software. Robotics research today is focused on developing systems that exhibit modularity, flexibility, redundancy, fault-tolerance, a general and extensible software environment and seamless connectivity to other machines, some researchers focus on completely automating a manufacturing process or a task, by providing sensor based intelligence to the robot arm, while others try to solidify the analytical foundations on which many of the basic concepts in robotics are built.
In this highly developing society time and man power are critical constrains for completion of task in large scales. The automation is playing important role to save human efforts in most of the regular and frequently carried works. One of the major and most commonly performed works is picking and placing of jobs from source to destination.
Present day industry is increasingly turning towards computer-based automation mainly due to the need for increased productivity and delivery of end products with uniform quality. The inflexibility and generally high cost of hard-automation systems, which have been used for automated manufacturing tasks in the past, have led to a broad based interest in the use of robots capable of performing a variety of manufacturing functions in a flexible environment and at lower costs. The use of Industrial Robots characterizes some of contemporary trends in automation of the manufacturing process. However, present day industrial robots also exhibit a monolithic mechanical structure and closed-system software architecture. They are concentrated on simple repetitive tasks, which tend not to require high precision.
The pick and place robot is a microcontroller based mechatronic system that detects the object, picks that object from source location and places at desired location. For detection of object, infrared sensors are used which detect presence of object as the transmitter to receiver path for infrared sensor is interrupted by placed object.
1.1 HISTORY OF ROBOTS
Robot is a word that is both a coinage by an individual person and a borrowing. It has been in English since 1923 when the Czech writer Karel Capek's play R.U.R. was translated into English and presented in London and New York. R.U.R., published in 1921, is an abbreviation of Rossum's Universal Robots, robot itself comes from Czech robota, "servitude, forced labor," from rab, "slave." The Slavic root behind robota is orb-, from the Indo-European root orbh, referring to separation from one's group or passing out of one sphere of ownership into another. Czech robota is also similar to another German derivative of this root, namely Arbeit, "work”. Arbeit may be descended from a word that meant "slave labor," and later generalized to just "labor."
The various developments in the field of Robotics with the progress in scientific technology have been revealed as follows:
1.2 LAW OF ROBOTICS
Isaac Asimov conceived the robots as humanoids, devoid of feelings, and used them in a number of stories. His robots were well-designed, fail-safe machines, whose brains were programmed by human beings. Anticipating the dangers and havoc such a device could cause, he postulated rules for their ethical conduct. Robots were required to perform according to three principles known as “Three laws of Robotics”’ which are as valid for real robots as they were for Asimov’s robots and they are:
1. A robot should not injure a human being or, through inaction, allow a human to be harmed.
2. A robot must obey orders given by humans except when that conflicts with the First Law.
3. A robot must protect its own existence unless that conflicts with the First or Second law.
These are very general laws and apply even to other machines and appliances. They are always taken care of in any robot design.
1.3 WHAT IS AND WHAT IS NOT A ROBOT?
Automation as a technology is concerned with the use of mechanical, electrical, electronic and computer-based control systems to replace human beings with machines, not only for physical work but also for the intelligent information processing. Industrial automation, which started in the eighteenth century as fixed automation has transformed into flexible and programmable automation in the last 15 or 20 years. Computer numerically controlled machine tools, transfer and assembly lines are some examples in this category.
Common people are easily influenced by science fiction and thus imagine a robot as a humanoid that can walk, see, hear, speak, and do the desired work. But the scientific interpretation of science fiction scenario propounds a robot as an automatic machine that is able to interact with and modify the environment in which it operates. Therefore, it is essential to define what constitutes a robot. Different definitions from diverse sources are available for a robot.
1.4 COMPONENTS OF ROBOT:-
1. STRUCTURE

The structure of a robot is usually mostly mechanical and can be called a kinematic chain. The chain is formed of links, actuators, and joints which can allow one or more degrees of freedom. Most contemporary robots use open serial chains in which each page link connects the one before to the one after it. These robots are called serial robots and often resemble the human arm. Robots used as manipulators have an end effector mounted on the last link. This end effector can be anything from a welding device to a mechanical hand used to manipulate the environment.
2. POWER SOURCE
At present mostly (lead-acid) batteries are used, but potential power sources could be:
• Pneumatic (compressed gases)
• Hydraulics (compressed liquids)
• Flywheel energy storage
• Organic garbage (through anaerobic digestion)
• Still untested energy sources (e.g. Nuclear Fusion reactors)
3. ACTUATION
Actuators are like the "muscles" of a robot, the parts which convert stored energy into movement. By far the most popular actuators are electric motors that spin a wheel or gear, and linear actuators that control industrial robots in factors. But there are some recent advances in alternative types of actuators, powered by electricity, chemicals, or compressed air.
4. TOUCH
Current robotic and prosthetic hands receive far less tactile information than the human hand. Recent research has developed a tactile sensor array that mimics the mechanical properties and touch receptors of human fingertips. The sensor array is constructed as a rigid core surrounded by conductive fluid contained by an elastomeric skin. Electrodes are mounted on the surface of the rigid core and are connected to an impedance-measuring device within the core. When the artificial skin touches an object the fluid path around the electrodes is deformed, producing impedance changes that map the forces received from the object.
5. VISION
Computer vision is the science and technology of machines that see. As a scientific discipline, computer vision is concerned with the theory behind artificial systems that extract information from images. The image data can take many forms, such as video sequences and views from cameras.
In most practical computer vision applications, the computers are pre-programmed to solve a particular task, but methods based on learning are now becoming increasingly common.
Computer vision systems rely on image sensors which detect electromagnetic radiation which is typically in the form of either visible light or infra-red light. The sensors are designed using solid-state physics. The process by which light propagates and reflects off surfaces is explained using optics. Sophisticated image sensors even require quantum mechanics to provide a complete understanding of the image formation process.
6. MANIPULATION
Robots which must work in the real world require some way to manipulate objects; pick up, modify, destroy, or otherwise have an effect. Thus the 'hands' of a robot are often referred to as end effectors, while the arm is referred to as a manipulator. Most robot arms have replaceable effectors, each allowing them to perform some small range of tasks. Some have a fixed manipulator which cannot be replaced, while a few have one very general purpose manipulator, for example a humanoid hand.
Mechanical Grippers: One of the most common effectors is the gripper. In its simplest manifestation it consists of just two fingers which can open and close to pick up and let go of a range of small objects. Fingers can for example be made of a chain with a metal wire run trough it.
Vacuum Grippers: Pick and place robots for electronic components and for large objects like car windscreens, will often use very simple vacuum grippers. These are very simple astrictive devices, but can hold very large loads provided the pretension surface is smooth enough to ensure suction.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: report of pick and place robotics, literature of pick and place robots, literature survey for pick and place robot, pick and place robot mechanism, seminar topics for pick and place robot, ppt on pick and place robot using 89c51, pick and place,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
Pick and Place Robot - by computer science topics - 29-06-2010, 12:27 PM
RE: Pick and Place Robot - by stephy s daniel - 24-10-2010, 01:48 PM
RE: Pick and Place Robot - by seminar class - 25-03-2011, 04:56 PM
RE: Pick and Place Robot - by seminar class - 31-03-2011, 03:17 PM
RE: Pick and Place Robot - by seminar paper - 10-03-2012, 03:35 PM
Pick and Place robot - by project topics - 22-12-2010, 01:23 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Military combat robot wireless controlled. Camera helps keeping an eye on border. seminar class 6 11,409 09-06-2017, 10:27 AM
Last Post: jaseela123d
  DESIGN AND IMPLEMENTATION OF GOLAY ENCODER AND DECODER computer science crazy 2 23,673 26-08-2016, 03:46 PM
Last Post: anasek
  Line Following Robot project topics 2 1,480 12-05-2016, 09:51 AM
Last Post: seminar report asees
  AUTO PATH FINDER ROBOT computer science technology 3 4,792 23-04-2014, 09:36 PM
Last Post: [email protected]
  RF Based SPY robot full report seminar topics 5 10,869 07-10-2013, 03:34 PM
Last Post: Guest
  ANTI THEFT ALERT AND AUTO ARRESTING SYSTEM FOR MUSEUMS AND JEWELRY SHOPS project report helper 11 14,636 12-08-2013, 09:57 AM
Last Post: computer topic
  AUTOMATIC VEHICLE ACCIDENT DETECTION AND MESSAGING SYSTEM USING GSM AND GPS MODEM smart paper boy 14 10,778 02-01-2013, 06:16 PM
Last Post: naidu sai
  RF Controlled Robot with Metal Detector and Wireless image and voice transmission(Mod seminar class 1 3,905 06-11-2012, 12:37 PM
Last Post: seminar details
  Remote Controlled Metal Detecting Robot with Remote Image Transmission seminar class 3 5,035 06-11-2012, 12:37 PM
Last Post: seminar details
  MICROCONTROLLER BASED FIRE FIGHTING ROBOT full report project topics 35 34,980 02-11-2012, 12:27 PM
Last Post: Guest

Forum Jump: