satellite communication pdf report
#6
Presented by:
T.Prasad

[attachment=10955]
Satellite Communications
 Two Stations on Earth want to communicate through radio broadcast but are too far away to use conventional means.
 The two stations can use a satellite as a relay station for their communication
 One Earth Station sends a transmission to the satellite. This is called a Uplink.
 The satellite Transponder converts the signal and sends it down to the second earth station. This is called a Downlink.
Basics: Advantages of Satellites
 The advantages of satellite communication over terrestrial communication are:
 The coverage area of a satellite greatly exceeds that of a terrestrial system.
 Transmission cost of a satellite is independent of the distance from the center of the coverage area.
 Satellite to Satellite communication is very precise.
 Higher Bandwidths are available for use.
Basics: Disadvantages of Satellites
 The disadvantages of satellite communication:
 Launching satellites into orbit is costly.
 Satellite bandwidth is gradually becoming used up.
 There is a larger propagation delay in satellite communication than in terrestrial communication.
Basics: How Satellites are used
 Service Types
 Fixed Service Satellites (FSS)
• Example: Point to Point Communication
 Broadcast Service Satellites (BSS)
• Example: Satellite Television/Radio
• Also called Direct Broadcast Service (DBS).
 Mobile Service Satellites (MSS)
• Example: Satellite Phones
Types of Satellites
Satellite Orbits

 GEO
 LEO
 MEO
 Molniya Orbit
 HAPs
 Frequency Bands
Geostationary Earth Orbit (GEO)
 These satellites are in orbit 35,863 km above the earth’s surface along the equator.
 Objects in Geostationary orbit revolve around the earth at the same speed as the earth rotates. This means GEO satellites remain in the same position relative to the surface of earth.
 Advantages
 A GEO satellite’s distance from earth gives it a large coverage area, almost a fourth of the earth’s surface.
 GEO satellites have a 24 hour view of a particular area.
 These factors make it ideal for satellite broadcast and other multipoint applications.
 Disadvantages
 A GEO satellite’s distance also cause it to have both a comparatively weak signal and a time delay in the signal, which is bad for point to point communication.
 GEO satellites, centered above the equator, have difficulty broadcasting signals to near polar regions
Low Earth Orbit (LEO)
 LEO satellites are much closer to the earth than GEO satellites, ranging from 500 to 1,500 km above the surface.
 LEO satellites don’t stay in fixed position relative to the surface, and are only visible for 15 to 20 minutes each pass.
 A network of LEO satellites is necessary for LEO satellites to be useful
 Advantages
 A LEO satellite’s proximity to earth compared to a GEO satellite gives it a better signal strength and less of a time delay, which makes it better for point to point communication.
 A LEO satellite’s smaller area of coverage is less of a waste of bandwidth.
 Disadvantages
 A network of LEO satellites is needed, which can be costly
 LEO satellites have to compensate for Doppler shifts cause by their relative movement.
 Atmospheric drag effects LEO satellites, causing gradual orbital deterioration.
Medium Earth Orbit (MEO)
 A MEO satellite is in orbit somewhere between 8,000 km and 18,000 km above the earth’s surface.
 MEO satellites are similar to LEO satellites in functionality.
 MEO satellites are visible for much longer periods of time than LEO satellites, usually between 2 to 8 hours.
 MEO satellites have a larger coverage area than LEO satellites.
 Advantage
 A MEO satellite’s longer duration of visibility and wider footprint means fewer satellites are needed in a MEO network than a LEO network.
 Disadvantage
 A MEO satellite’s distance gives it a longer time delay and weaker signal than a LEO satellite, though not as bad as a GEO satellite.
Other Orbits
 Molniya Orbit Satellites
 Used by Russia for decades.
 Molniya Orbit is an elliptical orbit. The satellite remains in a nearly fixed position relative to earth for eight hours.
 A series of three Molniya satellites can act like a GEO satellite.
 Useful in near polar regions.
High Altitude Platform (HAP)
 One of the newest ideas in satellite communication.
 A blimp or plane around 20 km above the earth’s surface is used as a satellite.
 HAPs would have very small coverage area, but would have a comparatively strong signal.
 Cheaper to put in position, but would require a lot of them in a network.
Capacity Allocation
 FDMA
 FAMA-FDMA
 DAMA-FDMA
 TDMA
 Advantages over FDMA
FDMA
 Satellite frequency is already broken into bands, and is broken in to smaller channels in Frequency Division Multiple Access (FDMA).
 Overall bandwidth within a frequency band is increased due to frequency reuse (a frequency is used by two carriers with orthogonal polarization).
 The number of sub-channels is limited by three factors:
 Thermal noise (too weak a signal will be effected by background noise).
 Intermodulation noise (too strong a signal will cause noise).
 Crosstalk (cause by excessive frequency reusing).
 FDMA can be performed in two ways:
 Fixed-assignment multiple access (FAMA): The sub-channel assignments are of a fixed allotment. Ideal for broadcast satellite communication.
 Demand-assignment multiple access (DAMA): The sub-channel allotment changes based on demand. Ideal for point to point communication.
TDMA
 TDMA (Time Division Multiple Access) breaks a transmission into multiple time slots, each one dedicated to a different transmitter.
 TDMA is increasingly becoming more widespread in satellite communication.
 TDMA uses the same techniques (FAMA and DAMA) as FDMA does.
Advantages of TDMA over FDMA.
 Digital equipment used in time division multiplexing is increasingly becoming cheaper.
 There are advantages in digital transmission techniques. Ex: error correction.
 Lack of intermodulation noise means increased efficiency.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Tagged Pages: earth rotation model with explanation and image,
Popular Searches: iridium satellite system iss pdf, fadec boeing, wireless communication ppt in pdf satellite, khandpur pdf, nanogeneratorppt pdf, seminario nueva vida, pulstar neo geo,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
RE: satellite communication pdf report - by seminar class - 25-03-2011, 10:23 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  information about satellite based project 1 2,190 09-03-2017, 12:26 PM
Last Post: jaseela123d
  Wireless Power Transmission via Solar Power Satellite full report project topics 32 50,848 30-03-2016, 03:27 PM
Last Post: dhanabhagya
  gsm pdf and final seminars report suvendu9238 10 11,752 19-11-2014, 09:34 PM
Last Post: jaseela123d
  3G MOBILE COMMUNICATION TECHNOLOGY full report seminar presentation 22 31,406 29-01-2013, 11:06 AM
Last Post: seminar details
  underwater optical communication computer science topics 5 8,119 14-12-2012, 02:51 PM
Last Post: seminar details
  WIRELESS COMMUNICATION seminar class 1 1,547 07-12-2012, 02:47 PM
Last Post: seminar details
  “AIRSHIPS” AS A LOW COST ALTERNATIVE TO COMMUNICATION SATELLITES seminar surveyer 1 1,968 02-12-2012, 11:06 PM
Last Post: Guest
  Inter/Intra-Vehicle Wireless Communication project topics 4 3,673 22-11-2012, 12:42 PM
Last Post: seminar details
  Indoor Optical Wireless Communication System Utilizing White LED Lights Wifi 1 2,651 21-11-2012, 12:42 PM
Last Post: seminar details
  Underground Wireless Communication using Magnetic Induction Wifi 1 3,369 07-11-2012, 02:02 PM
Last Post: seminar details

Forum Jump: