robotic surgery full report
#7
[attachment=10464]
Objective:
To review the history, development, and current applications of robotics in surgery.
Background:
Surgical robotics is a new technology that holds significant promise. Robotic surgery is often heralded as the new revolution, and it is one of the most talked about subjects in surgery today. Up to this point in time, however, the drive to develop and obtain robotic devices has been largely driven by the market. There is no doubt that they will become an important tool in the surgical armamentarium, but the extent of their use is still evolving.
Methods:
A review of the literature was undertaken using Medline. Articles describing the history and development of surgical robots were identified as were articles reporting data on applications.
Results:
Several centers are currently using surgical robots and publishing data. Most of these early studies report that robotic surgery is feasible. There is, however, a paucity of data regarding costs and benefits of robotics versus conventional techniques.
Conclusions:
Robotic surgery is still in its infancy and its niche has not yet been well defined. Its current practical uses are mostly confined to smaller surgical procedure
Robotic surgery is a new and exciting emerging technology that is taking the surgical profession by storm. Up to this point, however, the race to acquire and incorporate this emerging technology has primarily been driven by the market. In addition, surgical robots have become the entry fee for centers wanting to be known for excellence in minimally invasive surgery despite the current lack of practical applications. Therefore, robotic devices seem to have more of a marketing role than a practical role. Whether or not robotic devices will grow into a more practical role remains to be seen.
Our goal in writing this review is to provide an objective evaluation of this technology and to touch on some of the subjects that manufacturers of robots do not readily disclose. In this article we discuss the development and evolution of robotic surgery, review current robotic systems, review the current data, discuss the current role of robotics in surgery, and finally we discuss the possible roles of robotic surgery in the future. It is our hope that by the end of this article the reader will be able to make a more informed decision about robotic surgery before “chasing the market.”
BACKGROUND AND HISTORY OF SURGICAL ROBOTS
Since 1921 when Czech playwright Karel Capek introduced the notion and coined the term robot in his play Rossom’s Universal Robots, robots have taken on increasingly more importance both in imagination and reality.1,2 Robot, taken from the Czechrobota, meaning forced labor, has evolved in meaning from dumb machines that perform menial, repetitive tasks to the highly intelligent anthropomorphic robots of popular culture. Although today’s robots are still unintelligent machines, great strides have been made in expanding their utility. Today robots are used to perform highly specific, highly precise, and dangerous tasks in industry and research previously not possible with a human work force. Robots are routinely used to manufacture microprocessors used in computers, explore the deep sea, and work in hazardous environment to name a few. Robotics, however, has been slow to enter the field of medicine.
The lack of crossover between industrial robotics and medicine, particularly surgery, is at an end. Surgical robots have entered the field in force. Robotic telesurgical machines have already been used to perform transcontinental cholecystectomy.3,4Voice-activated robotic arms routinely maneuver endoscopic cameras, and complex master slave robotic systems are currently FDA approved, marketed, and used for a variety of procedures. It remains to be seen, however, if history will look on the development of robotic surgery as a profound paradigm shift or as a bump in the road on the way to something even more important.
Paradigm shift or not, the origin of surgical robotics is rooted in the strengths and weaknesses of its predecessors. Minimally invasive surgery began in 1987 with the first laparoscopic cholecystectomy. Since then, the list of procedures performed laparoscopically has grown at a pace consistent with improvements in technology and the technical skill of surgeons.5 The advantages of minimally invasive surgery are very popular among surgeons, patients, and insurance companies. Incisions are smaller, the risk of infection is less, hospital stays are shorter, if necessary at all, and convalescence is significantly reduced. Many studies have shown that laparoscopic procedures result in decreased hospital stays, a quicker return to the workforce, decreased pain, better cosmesis, and better postoperative immune function.6–8 As attractive as minimally invasive surgery is, there are several limitations. Some of the more prominent limitations involve the technical and mechanical nature of the equipment. Inherent in current laparoscopic equipment is a loss of haptic feedback (force and tactile), natural hand-eye coordination, and dexterity. Moving the laparoscopic instruments while watching a 2-dimensional video monitor is somewhat counterintuitive. One must move the instrument in the opposite direction from the desired target on the monitor to interact with the site of interest. Hand-eye coordination is therefore compromised. Some refer to this as the fulcrum effect.9Current instruments have restricted degrees of motion; most have 4 degrees of motion, whereas the human wrist and hand have 7 degrees of motion. There is also a decreased sense of touch that makes tissue manipulation more heavily dependent on visualization. Finally, physiologic tremors in the surgeon are readily transmitted through the length of rigid instruments. These limitations make more delicate dissections and anastomoses difficult if not impossible.10 The motivation to develop surgical robots is rooted in the desire to overcome the limitations of current laparoscopic technologies and to expand the benefits of minimally invasive surgery.
From their inception, surgical robots have been envisioned to extend the capabilities of human surgeons beyond the limits of conventional laparoscopy. The history of robotics in surgery begins with the Puma 560, a robot used in 1985 by Kwoh et al to perform neurosurgical biopsies with greater precision.6,11 Three years later, Davies et al performed a transurethral resection of the prostate using the Puma 560.12 This system eventually led to the development of PROBOT, a robot designed specifically for transurethral resection of the prostate. While PROBOT was being developed, Integrated Surgical Supplies Ltd. of Sacramento, CA, was developing ROBODOC, a robotic system designed to machine the femur with greater precision in hip replacement surgeries.1 ROBODOC was the first surgical robot approved by the FDA.
Also in the mid-to-late 1980s a group of researchers at the National Air and Space Administration (NASA) Ames Research Center working on virtual reality became interested in using this information to develop telepresence surgery.1 This concept of telesurgery became one of the main driving forces behind the development of surgical robots. In the early 1990s, several of the scientists from the NASA-Ames team joined the Stanford Research Institute (SRI). Working with SRI’s other robotocists and virtual reality experts, these scientists developed a dexterous telemanipulator for hand surgery. One of their main design goals was to give the surgeon the sense of operating directly on the patient rather than from across the room. While these robots were being developed, general surgeons and endoscopists joined the development team and realized the potential these systems had in ameliorating the limitations of conventional laparoscopic surgery.
The US Army noticed the work of SRI, and it became interested in the possibility of decreasing wartime mortality by “bringing the surgeon to the wounded soldier—through telepresence.”1 With funding from the US Army, a system was devised whereby a wounded soldier could be loaded into a vehicle with robotic surgical equipment and be operated on remotely by a surgeon at a nearby Mobile Advanced Surgical Hospital (MASH). This system, it was hoped, would decrease wartime mortality by preventing wounded soldiers from exsanguinating before they reached the hospital. This system has been successfully demonstrated on animal models but has not yet been tested or implemented for actual battlefield casualty care.
Several of the surgeons and engineers working on surgical robotic systems for the Army eventually formed commercial ventures that lead to the introduction of robotics to the civilian surgical community.1 Notably, Computer Motion, Inc. of Santa Barbara, CA, used seed money provided by the Army to develop the Automated Endoscopic System for Optimal Positioning (AESOP), a robotic arm controlled by the surgeon voice commands to manipulate an endoscopic camera. Shortly after AESOP was marketed, Integrated Surgical Systems (now Intuitive Surgical) of Mountain View, CA, licensed the SRI Green Telepresence Surgery system. This system underwent extensive redesign and was reintroduced as the Da Vinci surgical system. Within a year, Computer Motion put the Zeus system into production.
Other Sections
CURRENT ROBOTIC SURGICAL SYSTEMS
Today, many robots and robot enhancements are being researched and developed. Schurr et al at Eberhard Karls University’s section for minimally invasive surgery have developed a master-slave manipulator system that they call ARTEMIS.13 This system consists of 2 robotic arms that are controlled by a surgeon at a control console. Dario et al at the MiTech laboratory of Scuola Superiore Sant’Anna in Italy have developed a prototype miniature robotic system for computer-enhanced colonoscopy.14 This system provides the same functions as conventional colonoscopy systems but it does so with an inchworm-like locomotion using vacuum suction. By allowing the endoscopist to teleoperate or directly supervise this endoscope and with the functional integration of endoscopic tools, they believe this system is not only feasible but may expand the applications of endoluminal diagnosis and surgery. Several other laboratories, including the authors’, are designing and developing systems and models for reality-based haptic feedback in minimally invasive surgery and also combining visual servoing with haptic feedback for robot-assisted surgery.15–19
In addition to Prodoc, ROBODOC and the systems mentioned above several other robotic systems have been commercially developed and approved by the FDA for general surgical use. These include the AESOP system (Computer Motion Inc., Santa Barbara, CA), a voice-activated robotic endoscope, and the comprehensive master-slave surgical robotic systems, Da Vinci (Intuitive Surgical Inc., Mountain View, CA) and Zeus (Computer Motion Inc., Santa Barbara, CA).
The da Vinci and Zeus systems are similar in their capabilities but different in their approaches to robotic surgery. Both systems are comprehensive master-slave surgical robots with multiple arms operated remotely from a console with video assisted visualization and computer enhancement. In the da Vinci system (Fig. 1), which evolved from the telepresence machines developed for NASA and the US Army, there are essentially 3 components: a vision cart that holds a dual light source and dual 3-chip cameras, a master console where the operating surgeon sits, and a moveable cart, where 2 instrument arms and the camera arm are mounted.1 The camera arm contains dual cameras and the image generated is 3-dimensional. The master console consists of an image processing computer that generates a true 3-dimensional image with depth of field; the view port where the surgeon views the image; foot pedals to control electrocautery, camera focus, instrument/camera arm clutches, and master control grips that drive the servant robotic arms at the patient’s side.6 The instruments are cable driven and provide 7 degrees of freedom. This system displays its 3-dimensional image above the hands of the surgeon so that it gives the surgeon the illusion that the tips of the instruments are an extension of the control grips, thus giving the impression of being at the surgical site.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: robotic cardiac surgery ppt, robotic brain surgery, robotic surgery recent ppts, trinity theological seminary columbus ohio, robotic fish report, robotic laser surgery ppt free download, barbara foran,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
RE: robotic surgery full report - by projectsofme - 13-10-2010, 09:27 AM
RE: robotic surgery full report - by seminar class - 18-03-2011, 10:49 AM
RE: robotic surgery full report - by danycheg - 13-06-2011, 11:27 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  computer networks full report seminar topics 8 43,997 06-10-2018, 12:35 PM
Last Post: jntuworldforum
  OBJECT TRACKING AND DETECTION full report project topics 9 31,853 06-10-2018, 12:20 PM
Last Post: jntuworldforum
  imouse full report computer science technology 3 26,014 17-06-2016, 12:16 PM
Last Post: ashwiniashok
  Implementation of RSA Algorithm Using Client-Server full report seminar topics 6 27,728 10-05-2016, 12:21 PM
Last Post: dhanabhagya
  Optical Computer Full Seminar Report Download computer science crazy 46 68,119 29-04-2016, 09:16 AM
Last Post: dhanabhagya
  ethical hacking full report computer science technology 41 76,350 18-03-2016, 04:51 PM
Last Post: seminar report asees
  broadband mobile full report project topics 7 24,532 27-02-2016, 12:32 PM
Last Post: Prupleannuani
  steganography full report project report tiger 15 42,671 11-02-2016, 02:02 PM
Last Post: seminar report asees
  Digital Signature Full Seminar Report Download computer science crazy 20 45,458 16-09-2015, 02:51 PM
Last Post: seminar report asees
  Mobile Train Radio Communication ( Download Full Seminar Report ) computer science crazy 10 28,447 01-05-2015, 03:36 PM
Last Post: seminar report asees

Forum Jump: