NANOTECHNOLOGY CRITICAL ENDEAVOR IN CANCER full report
#2
[attachment=10445]
ABSTRACT:
To meet the goal of eliminating death and suffering from cancer, Nanotechnology cancer diagnosis, treatment, and prevention was founded. On novel nanodevices capable of one or more clinically important functions, including detecting cancer at its earliest stages, pinpointing its location within the body, delivering anticancer drugs specifically to malignant cells, and determining if these drugs are killing malignant cells. As these nanodevices are evaluated in clinical trials, researchers envision that nanotechnology will serve as multifunctional tools that will not only be used with any number of diagnostic and therapeutic agents, but will change the very foundations of cancer diagnosis, treatment, and prevention which are the main part of this paper.
The advent of nanotechnology in cancer research couldn't have come at a more opportune time.
To harness the potential of nanotechnology in cancer, NCI is seeking broad scientific input to provide direction to research and engineering applications. In doing so, NCI will develop a Cancer Nanotechnology Plan. Drafted with Introduction:
WHAT IS NANOTECHNOLOGY?
Nanotechnology refers to the interactions of cellular and molecular components and engineered materials—typically clusters of atoms, molecules, and molecular fragments--at the most elemental level of biology. Such nanoscale objects--typically, though not exclusively, with dimensions smaller
than 100 nanometers--can be useful by themselves or as part of larger devices containing multiple nanoscale objects. At the nanoscale, the physical, chemical, and biological properties of materials differ fundamentally and often noninvasive access to the interior of a living cell affords the opportunity for unprecedented gains on both clinical and basic research frontiers.
Unexpectedly from those of the corresponding bulk material because the quantum mechanical properties of atomic interactions are influenced by material variations on the nanometer scale. In fact, by creating nanometer-scale structures, it is possible to control fundamental characteristics of a material, including its melting point, magnetic properties, and even color, without changing the material's chemical composition.
Nanoscale devices and nanoscale components of larger devices are of the same size as biological entities. They are smaller than human cells (10,000 to 20,000 nanometers in diameter) and organelles and similar in size to large
biological macromolecules such as enzymes and receptors--hemoglobin, for example, is approximately 5 nm in diameter, while the lipid bilayer surrounding cells is on the order of 6 nm thick. Nanoscale devices smaller than 50 nanometers can easily enter most cells, while those smaller than 20 nanometers can transit out of blood vessels. As a result, nanoscale devices can readily interact with biomolecules
on both the cell surface and within the cell, often in ways that do not alter the behavior and biochemical properties of those molecules. From a scientific viewpoint, the actual construction and characterization of nanoscale devices may contribute to understanding carcinogenesis.Noninvasive access to the interior of a living cell affords the opportunity for unprecedented gains on both clinical and basic research frontiers. The ability to simultaneously interact with multiple critical proteins and nucleic acids at the molecular scale should provide better understanding of the complex regulatory and signaling networks that govern the behavior of cells in their normal state and as they undergo malignant transformation. Nanotechnology provides a platform for integrating efforts in proteomics
with other scientific investigations into the molecular nature of cancer by giving researchers the opportunity to simultaneously measure gene and protein expression, recognize specific protein structures and structural domains, and follow protein transport among different cellular
compartments. Similarly, nanoscale devices are already proving that they can deliver therapeutic agents that can act where they are likely to be most effective, that is, within the cell or even
input from experts in both cancer research and nanotechnology.
To harness the potential of nanotechnology in cancer, NCI is seeking broad scientific input to provide direction to research and engineering applications which was explained in this paper.
Though this quest is near its beginning, the following pages highlight some of the significant advances that have already occurred from bridging the interface between modern molecularbiology and nanotechnology was discussed in this paper indetail
within specific organelles. Yet despite their small size, nanoscale devices can also hold tens of thousands of small molecules, such as a contrast agent or a multicomponent diagnostic system capable of
assaying a cell's metabolic state, creating the opportunity for unmatched sensitivity in detecting cancer in its earliest stages. For example, current approaches may page link a monoclonal antibody to a single molecule of an MRI contrast agent, requiring that many hundreds or thousands of this construct
reach and bind to a targeted cancer cell in order to create a strong enough signal to be detected via MRI. Now imagine the same cancer-homing monoclonal antibody attached to a nanoparticle that contains tens of thousands of the same contrast agent--if even one such construct reaches and
binds to a cancer cell, it would be detectable.
DEVELOPING A CANCER NANOTECHNOLOGY PLAN:
This latter facility will develop important standards for nanotechnological constructs and devices that will enable researchers to develop cross-functional platforms that will serve multiple purposes. The laboratory will be a centralized characterization laboratory capable of generating technical data that will assist researchers in choosing which of the many promising nanoscale devices they might want to use for a particular clinical or research application. In addition, this new laboratory will facilitate the development of data to support regulatory sciences for the translation of nanotechnology into clinical applications.
The six major challenge areas of emphasis include:
Prevention and Control of Cancer
Developing nanoscale devices that can deliver cancer prevention agents
Designing multicomponent anticancer vaccines using nanoscale delivery vehicles
Early Detection and Proteomics
Creating implantable, biofouling-indifferent molecular sensors that can detect cancer-associated biomarkers that can be collected for ex vivo analysis or analyzed in situ, with the results being transmitted via wireless technology to the physician.
Developing "smart" collection platforms for simultaneous mass spectroscopic analysis of multiple
cancer-associated markers.
Imaging Diagnostics
Designing "smart" injectable, targeted contrast agents that improve the resolution of cancer to the single cell level engineering nanoscale devices capable of addressing the biological and evolutionary diversity of the multiple cancer cells that make up a tumor within an individual.
Multifunctional Therapeutics
Developing nanoscale devices that integrate diagnostic and therapeutic functions Creating "smart" therapeutic devices that can control the
spatial and temporal release of therapeutic agents while monitoring the effectiveness of these agents
Quality of Life Enhancement in Cancer Care
Designing nanoscale devices that can optimally deliver medications for treating conditions that may arise over time with chronic anticancer therapy, including pain, nausea, loss of appetite, depression, and difficulty breathing
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: ppt on nanotechnology in curing cancer, cancer for class 12, images for nanotechnology in cancer therapy ppt, ieee seminar report on nanotechnology used for cancer treatment, wireless technology cancer, critical path method seminar report, seminar report on critical path method,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
RE: NANOTECHNOLOGY CRITICAL ENDEAVOR IN CANCER full report - by seminar class - 17-03-2011, 04:55 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  wearable biosensors full report computer science technology 4 13,602 07-10-2017, 02:13 AM
Last Post: DanielRes
  software defined radio full report computer science technology 15 14,470 19-10-2015, 02:51 PM
Last Post: seminar report asees
  synthetic aperture radar system full report computer science technology 11 13,932 25-03-2015, 11:07 AM
Last Post: seminar report asees
  satrack full report computer science technology 8 17,515 21-07-2013, 08:32 AM
Last Post: Guest
  Power Point Tracking for Photovoltaic Systems full report computer science technology 1 4,567 19-01-2013, 12:51 PM
Last Post: seminar details
  robotics and its applications full report computer science technology 5 14,488 21-12-2012, 11:58 AM
Last Post: seminar details
  embedded configurable operating system full report project reporter 1 5,074 11-12-2012, 01:32 PM
Last Post: seminar details
  adaptive missle guidance full report computer science technology 1 4,615 10-12-2012, 03:28 PM
Last Post: seminar details
  Wireless Battery Charger Chip for Smart-Card Applications full report project topics 6 7,176 09-11-2012, 11:53 AM
Last Post: seminar details
  automatic speech recognition full report project report tiger 3 5,032 13-03-2012, 12:34 PM
Last Post: seminar paper

Forum Jump: