Artificial Intelligence full report
#11
[attachment=10200]
ARTIFICIAL INTELLIGENCE
Architecture of Intelligence
Abstract

We start by making a distinction between mind and cognition, and by positing that cognition is an aspect of mind. We propose as a working hypothesis a Separability Hypothesis which posits that we can factor off an architecture for cognition from a more general architecture for mind, thus avoiding a number of philosophical objections that have been raised about the "Strong AI" hypothesis. Thus the search for an architectural level which will explain all the interesting phenomena of cognition is likely to be futile. There are a number of levels which interact, unlike in the computer model, and this interaction makes explanation of even relatively simple cognitive phenomena in terms of one level quite incomplete.
I. Dimensions for Thinking About Thinking
A major problem in the study of intelligence and cognition is the range of—often implicit—assumptions about what phenomena these terms are meant to cover. Are we just talking about cognition as having and using knowledge, or are we also talking about other mental states such as emotions and subjective awareness? Are we talking about intelligence as an abstract set of capacities, or as a set of biological mechanisms and phenomena? These two questions set up two dimensions of discussion about intelligence. After we discuss these dimensions we will discuss information processing, representation, and cognitive architectures.
A. Dimension 1. Is intelligence separable from other mental phenomena?
When people think of intelligence and cognition, they often think of an agent being in some knowledge state, that is, having thoughts, beliefs. They also think of the underlying process of cognition as something that changes knowledge states. Since knowledge states are particular types of information states the underlying process is thought of as information processing. However, besides these knowledge states, mental phenomena also include such things as emotional states and subjective consciousness. Under what conditions can these other mental properties also be attributed to artifacts to which we attribute knowledge states? Is intelligence separable from these other mental phenomena?
It is possible that intelligence can be explained or simulated without necessarily explaining or simulating other aspects of mind. A somewhat formal way of putting this Separability Hypothesis is that the knowledge state transformation account can be factored off as a homomorphism of the mental process account. That is: If the mental process can be seen as a sequence of transformations: M1 -->M2 -->..., where Mi is the complete mental state, and the transformation function (the function that is responsible for state changes) is F, then a subprocess K1 --> K2 -->. . . can be identified such that each Ki is a knowledge state and a component of the corresponding Mi, the transformation function is f, and f is some kind of homomorphism of F. A study of intelligence alone can restrict itself to a characterization of K’s and f, without producing accounts of M’s and F. If cognition is in fact separable in this sense, we can in principle design machines that implement f and whose states are interpretable as K’s. We can call such machines cognitive agents, and attribute intelligence to them. However, the states of such machines are not necessarily interpretable as complete M’s, and thus they may be denied other attributes of mental states.
B. Dimension 2: Functional versus Biological
The second dimension in discussions about intelligence involves the extent to which we need to be tied to biology for understanding intelligence. Can intelligence be characterized abstractly as a functional capability which just happens to be realized more or less well by some biological organisms? If it can, then study of biological brains, of human psychology, or of the phenomenology of human consciousness is not logically necessary for a theory of cognition and intelligence, just as enquiries into the relevant capabilities of biological organisms are not needed for the abstract study of logic and arithmetic or for the theory of flight. Of course, we may learn something from biology about how to practically implement intelligent systems, but we may feel quite free to substitute non-biological (both in the sense of architectures which are not brain-like and in the sense of being un- constrained by considerations of human psychology) approaches for all or part of our implementation. Whether intelligence can be characterized abstractly as a functional capability surely depends upon what phenomena we want to include in defining the functional capability, as we discussed. We might have different constraints on a definition that needed to include emotion and subjective states than one that only included knowledge states. Clearly, the enterprise of AI deeply depends upon this functional view being true at some level, but whether that level is abstract logical representations as in some branches of AI, Darwinian neural group selections as proposed by Edelman, something intermediate, or something physicalist is still an open question.
III. Architectures for Intelligence
We now move to a discussion of architectural proposals within the information processing perspective. Our goal is to try to place the multiplicity of proposals into perspective. As we review various proposals, we will present some judgements of our own about relevant issues. But first, we need to review the notion of an architecture and make some additional distinctions.
A. Form and Content Issues in Architectures
In computer science, a programming language corresponds to a virtual architecture. A specific program in that language describes a particular (virtual) machine, which then responds to various inputs in ways defined by the program. The architecture is thus what Newell calls the fixed structure of the information processor that is being analyzed, and the program specifies a variable structure within this architecture. We can regard the architecture as the form and the program as the content, which together fully instantiate a particular information processing machine. We can extend these intuitions to types of machines which are different from computers. For example, the connectionist architecture can be abstractly specified as the set {{N}, {nI}, {nO}, {zi}, {wij}}, where {N} is a set of nodes, {nI} and {nO} are subsets of {N} called input and output nodes respectively, {zi} are the functions computed by the nodes, and {wij} is the set of weights between nodes. A particular connectionist machine is then instantiated by the "program" that specifies values for all these variables.
We have discussed the prospects for separating intelligence (a knowledge state process) from other mental phenomena, and also the degree to which various theories of intelligence and cognition balance between fidelity to biology versus functionalism. We have discussed the sense in which alternatives such as logic, decision tree algorithms, and connectionism are all alternative languages in which to couch an information processing account of cognitive phenomena, and what it means to take a Knowledge Level stance towards cognitive phenomena. We have further discussed the distinction between form and content theories in AI. We are now ready to give an overview of the issues in cognitive architectures. We will assume that the reader is already familiar in some general way with the proposals that we discussing. Our goal is to place these ideas in perspective.
B. Intelligence as Just Computation
Until recently the dominant paradigm for thinking about information processing has been the Turing machine framework, or what has been called the discrete symbol system approach. Information processing theories are formulated as algorithms operating on data structures. In fact AI was launched as a field when Turing proposed in a famous paper that thinking was computation of this type (the term "artificial intelligence" itself was coined later) . Natural questions in this framework would be whether the set of computations that underlie thinking is a subset of Turing-computable functions, and if so how the properties of the subset should be characterized.
Most of AI research consists of algorithms for specific problems that are associated with intelligence when humans perform them. Algorithms for diagnosis, design, planning, etc., are proposed, because these tasks are seen as important for an intelligent agent. But as a rule no effort is made to relate the algorithm for the specific task to a general architecture for intelligence. While such algorithms are useful as technologies and to make the point that several tasks that appear to require intelligence can be done by certain classes of machines, they do not give much insight into intelligence in general.
C. Architectures for Deliberation
Historically most of the intuitions in AI about intelligence have come from introspections about the relationships between conscious thoughts. We are aware of having thoughts which often follow one after another. These thoughts are mostly couched in the medium of natural language, although sometimes thoughts include mental images as well. When people are thinking for a purpose, say for problem solving, there is a sense of directing thoughts, choosing some, rejecting others, and focusing them towards the goal. Activity of this type has been called "deliberation." Deliberation, for humans, is a coherent goal-directed activity, lasting over several seconds or longer. For many people thinking is the act of deliberating in this sense. We can contrast activities in this time span with other cognitive phenomena, which, in humans, take under a few hundred milliseconds, such as real-time natural language understanding and generation, visual perception, being reminded of things, and so on. These short time span phenomena are handled by what we will call the subdeliberative architecture, as we will discuss later.
Researchers have proposed different kinds of deliberative architectures, depending upon which kind of pattern among conscious thoughts struck them. Two groups of proposals about such patterns have been influential in AI theory-making: the reasoning view and the goal-subgoal view.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: rza chess, let us c, scare crow costumes, heaven is for, seminar report on artificial intelligence, www dear affectionate, biosafety ethics,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
RE: Artificial Intelligence full report - by seminar class - 15-03-2011, 02:14 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  computer networks full report seminar topics 8 43,969 06-10-2018, 12:35 PM
Last Post: jntuworldforum
  OBJECT TRACKING AND DETECTION full report project topics 9 31,837 06-10-2018, 12:20 PM
Last Post: jntuworldforum
  imouse full report computer science technology 3 25,994 17-06-2016, 12:16 PM
Last Post: ashwiniashok
  Implementation of RSA Algorithm Using Client-Server full report seminar topics 6 27,710 10-05-2016, 12:21 PM
Last Post: dhanabhagya
  Optical Computer Full Seminar Report Download computer science crazy 46 68,094 29-04-2016, 09:16 AM
Last Post: dhanabhagya
  ethical hacking full report computer science technology 41 76,244 18-03-2016, 04:51 PM
Last Post: seminar report asees
  broadband mobile full report project topics 7 24,514 27-02-2016, 12:32 PM
Last Post: Prupleannuani
  steganography full report project report tiger 15 42,651 11-02-2016, 02:02 PM
Last Post: seminar report asees
  Digital Signature Full Seminar Report Download computer science crazy 20 45,429 16-09-2015, 02:51 PM
Last Post: seminar report asees
  Mobile Train Radio Communication ( Download Full Seminar Report ) computer science crazy 10 28,441 01-05-2015, 03:36 PM
Last Post: seminar report asees

Forum Jump: