Nanotechnology in medicine
#3
[attachment=10024]
Nanotechnology in medicine
introduction

Nanomedicine is the medical application of Nanotechnology.
Nanomaterials to nanoelectronic biosensers,molecular nanotechnology.
The issues of toxicity, environmental impacts of nanoscale materials.
Fund from US National Institute of Health.
In 2005 – 5 year plan to set up four Nanomedicine centers.
In April 2006 the journal Nanomaterials estimated 130 nanotech based drugs, delivery systems developed worldwide.
overview
Seeks clinically useful devices in near future.
New commercial application in Pharmaceutical industry include drug delivery system, new therapies, vivo imaging.
Another goal Neuro-electronic interfaces,nanoelectronic based sensors.
Speculative field of molecular technology-Cell repair machines.
Sales reaching 6.8 billion dollars in 2004.
With over 200 companies,38 products worldwide.
Minimum 3.8 billion dollars in nanotechnology R&D invested every year.
Medical use of nanomaterials
drug delivery
Approaches –developing nanoscale particles to improve drug bioavailability.
Bioavailability-Presence of drug molecules, where they are needed in the body, where they will do the most good.
Maximizing the bioavailability specific places in the body over a period of time.
Targeting the molecules and delivering drugs with cell precision.
More than $65 billion are wasted each year due to poor bioavailability.
New method-treating illness, diseases such as cancer.
Self assembled biocompatible nanodevices-detect,evaluate,treat,report to the clinical doctor automatically.
Lipid or Polymer based nanoparticles,improve the Pharmacological, Therapeutic properties of drug.
Strength-ability alter Pharmacokinetics,biodistribution of drug.
Ability to get drugs through cell membranes and into cell cytoplasm.
Triggered response-drug molecules to used more efficiently.
Drugs are placed in the body and only activate on encountering a particular signal.
Drug may cause tissue damage but with drug delivery, regulated drug release can eliminate the problem.
Protein and peptide delivery
These exert multiple biological actions.
Treatment of various diseases and disorders.
Macromolecules are called Biopharmaceuticals.
Targeted / controlled delivery of these using nanoparticles and dendrimer.
Field is called Nanobiopharmaceutics,
Products are called Nanobiopharmaceuticals.
cancer
Nanoparticle properties are useful in Oncology,imaginig.
Quantum dots conjunction with MRI produce exceptional images of humor sites.
Use of fluorescent quantum dots produce higher contrast image, lower cost than today’s organic dyes used as contrast media.
Made up of quite toxic elements.
Seek out and bind to certain tumor cells.
Kanzius RF therapy-”cooks” the tumors with radio waves that heat only the nanoparticles at the adjacent cells.
Sensor test chip containing 1000’s of nanowires able to detect proteins and other biomarkers left behind by cancer cells
Enable the detection and diagnosis of cancer from a few drop of patients blood.
Rice university-prof.jennifer west demonstrated 120nm diameter nanoshells coated with gold to kill cancer tumors in mice.
Targeted to bond to cancerous cells by conjugating antibodies or peptides to the nanoshell surface.
Infrared laser passes through the flesh without heating it, gold is heated sufficiently to cause death to the cancer cells.
Cadmium selenide glow by UV light injected seep into cancer tumors, surgeon guide for more accurate tumor removal.
Photodynamic-therapy metal particle placed into the body-light illuminated-energy is heated the particle and tissue.
Light produce high energy oxygen molecules chemically react and destroy most organic molecules(tumours).
surgery
At rice university a flesh welder is used to fuse two pieces of chicken meat into a single piece.
Two pieces touching-greenish liquid containing gold coated nanoshells is dribbled along the seam.
Infrared laser is traced along the seam causing two sides weld together.
Solve blood leaks, avoid restitch and weld the artery perfectly.
visualization
Tracking movement help how the drugs are distributed or how substances are metabolized.
Difficult to track small group of cells, so we use dye the cells.
Dyes are excited by light of a certain wavelength,
Different color dyes absorb different frequencies of light.
A around this problem is with luminescent tags.
Tags are quantum dots attached to proteins that penetrate cell membranes.
Nanoparticle targeting
Nanoparticles are tools for drug delivery, medical imaging,diagonestic sensors.
Biodistribution of nanoparticles unknown due to difficult to target specific organs in the body.
Current research in the excretory systems of mice,
Ability of gold composites selectively target certain organs based on their size and charge.
Composites are encapsulated by dendrimer.
Positively charged gold Nanoparticle enter in the kidney,
Negatively charged-remained in the liver and spleen.
Positive charge decreases the rate of osponization of nanoparticles in the liver thus affecting the excretory pathway.
Small size of 5nm particles compartmentalized in the peripheral tissues accumulate in the body overtime.
Targeting and distribution can be augmented by nanoparticles.
Dangers of nanotoxicity important step to understanding of their medical uses.
Neuroelectronic interfaces
Goal-construction of nanodevices with computer linked to the nervous system.
Building of molecular structure permit control detection of nerve impulses by external computer.
Computer able to interpret,register,respond to signals the body gives off when it feel sensations.
Many injuries and accidents may impair the nervous system result in dysfunctional system and paraplegia.
Two considerations made when selecting the power source.
REFUELABLE-energy is refilled continuously or periodically with external sonic,chemical,tethered,magnetic,or electrical sources.
NON-FUELABLE-all power drawn from internal energy source which would stop when all energy is drained.
Limitations-electromagnetic pulses cause electrical interference is a possibility.
Thick insulators are required to prevent electron leakage.
High conductivity occurs sudden power loss and “shorting out”.
Structures are sense ionic current and be able to cause currents to flow backward.
Medical application of molecular nanotechnology
Speculative subfield of nanotechnology regarding the possibility of engineering molecular assemblers.
Reorder matter at a molecular or atomic scale.
Seeking to anticipate, to propose an agenda for future inquiry.
Proposed elements-molecular assemblers,nanorobots are far beyond current capabilities.
nanorobots
Using nanorobots in medicine is totally change the world of medicine once it is realized.
Nanorobots(computational genes) introduce into the body to repair or detect damages and infections.
Robert freitas-Institute for molecular manufacturing-a typical blood borne medical nanorobots-size 0.5-3 micrometer,
Maximum size is possible due to capillary passage requirement.
Carbon-primary element-due to inherent strength.
Fabricated in desktop nanofactories specialized for this purpose.
Nanodevice observe the work inside the body using MRI.
Components are manufactured using mostly 13C atom which has a non-zero nuclear magnetic moment.
Nanodevice injected into the human body then go to work in a specific organ or tissue mass.
Doctor monitor the progress got correct target treatment region.
Nanodevice maintained neatly around their target, so the procedure was successful.
Cell repair machines
Direct repair system.
Access to cells is possible because biologists can stick needles into cells without killing them.
Molecular system entering the cell and recognize, build or rebuild every molecule in a cell and can dissemble damaged molecules.
System sense differences from healthy ones and make modification to the structure.
Programmed with more abilities(DNA damage,enzyme deficiency) with the help of advanced AT system.
Nano computers guide these machines,
Rebuild damaged molecular structures.
Repair whole cells by working structure by structure, cell by cell, tissue by tissue and finally organ by organ.
So the health is restored in the body.
Cells damaged to the point of inactivity can be repaired because of the ability of molecular machines to build cells from scratch.
Free medicine from reliance on self repair alone.
nanonephrology
Branch of Nanomedicine and nanotechnology.
Deals with,1)study of kidney protein structures at the atomic level.
2)nano-imaging approaches to study cellular processes in kidney cells.
3)nanomedical treatments that utilize nanoparticles and to treat various kidney diseases.
Diagnosis and therapy of renal diseases are part of nanonephrology.
Play a role in the management of patients with kidney disease in the future.
Nano-scale information involved in normal kidney processes and pathological states.
Novel therapeutic approaches designed to combat major renal diseases.
Nano-scale artificial kidney is a goal that many physicians dreams of.
Advances of programmable and controllable nano-scale robots to execute curative and reconstructive procedure in the kidney at the cellular and molecular levels.
Design is compatible with kidney cells, safely operate in vivo is also a future goal.
Cellular-nano level has the potential improving the lives of patients with kidney diseases.
conclusion
The nanotechnology in medical field is briefly explained.
It has more and more advantageous.
It is in further research process.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: seminarski radovi iz iz pedagogije sporta, medicine saem plovdiv, regenerative medicine, philadelphia school of medicine georgia, university of british columbia school of medicine, college of medicine uic sbms, tagcloud nanomedicine,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
Nanotechnology in medicine - by seminar surveyer - 28-12-2010, 12:11 PM
RE: Nanotechnology in medicine - by seminar class - 01-03-2011, 11:44 AM
RE: Nanotechnology in medicine - by seminar class - 11-03-2011, 04:29 PM
RE: Nanotechnology in medicine - by seminar class - 26-03-2011, 12:39 PM

Forum Jump: