Nanotechnology in medicine
#2
[attachment=9273]
NANOTECHNOLOGY IN MEDICINE
Nanotechnology in medicine has a wider application. Nanotechnology, as most of the people know has provided a strong base in advancing the world in all the key areas that can be thought of. Nanotechnology, in the field of medicine too, has made its debut and has greatly increased the possibilities and enhancements that the world has thought ‘impossible’ so far. With the introduction of Nanotechnology in medicine, medical scientists and researchers were able to make remarkable achievements.
The first accomplishment that Nanotechnology has found its application in medicine can be in the area of treating the cancer. Treatment of cancer was never so easy before the introduction of technology in medicine. But after the entry of nanotechnology in medicine, there have been wider researches and enhancements in the treatments of cancer and treating the cancer is no more a tedious and risky job now days.
The initiative programs of Nanotechnology in medicine are quickly gaining competence worldwide and are effectively developing methods of administering various diseased in a safe positive manner. Nanotechnology in medicine has potentially made an alternative to the morphine based treatments and medications.
Currently there are rapid researches and studies going on evaluating the possibilities of nanotechnology in medicine. These studies have already declared that nanotechnology in medicine has made tremendous explorations and the researches and studies are sure going to explore the newer possibilities resulting in experiencing the medical world in much safer and smoother way. The nanotechnology is currently being engineered so as to sophisticate and well control the molecular machines at the molecular level.
ROLE OF NT IN MDCN
In the field of medicine alone, nanotech is giving rise to tools and possible applications that are now being streamlined to focus on finding and eradicating cancer cells. This is a particularly timely issue because cancer is now the foremost killing disease of the modern times. As humankind evolves into the new millennia, it seems that cancer cells are evolving as well. As such, there are still no known medicines or medical procedures that can prevent or cure the occurrence of any type of cancer.
The Role Of Nanotechnology In Medicine
Cancer, or any disease for that matter, begins and ends with the tiniest life force within the human body. These are the living cells that carry out the multiple complex functions necessary for life. Unfortunately, with today’s tools for diagnosis and surgical procedures, there is always the possibility that: damaged, infected and disease-carrying cells are overlooked (and thereby not eradicated by the treatment); and that the surgical procedure might actually do more damage as opposed to letting the disease run its course. It is not uncommon for cancer cells to metastasize to other organs in the body after removing the cancer afflicted part – even with aggressive chemotherapy. It is also not uncommon to hear patients dying from the surgical procedures or surgery patients suffering from the complications of the post operative treatments.
With nanotech, medicine has a fighting chance against cancer cells by producing diagnostic tools that can pinpoint the occurrence of cancerous growths as they happen; and by removing these in the cellular level that the afflicted body does not even have to be surgically opened. Nanotech has paved the way for various possibilities in diagnosis, cure and prevention of all possible diseases. Most of these are still a few technology tweaks along the way. However, the point is: the potential is now here and what may have been sheer impossibilities a good 50 years back are now becoming real by the minute. Right now, all eyes are focused on cancer research.
Cancer research with nanotech is particularly useful when it comes to the development and construction of smaller but more efficient cancer detection gadgets that can be easily replicated with the right technology. This means that formerly expensive diagnostic tools for cancer detection can now be made at more economical rates. Complex molecular machines can also be started on and developed further to help with correct and early disease diagnosis. One possibility that a lot of nanotech researchers are trying to develop are the molecular computers that not only works as a diagnostic tool but can be used as a search-and-destroy “operative” that can eradicate cancer cells on a cellular level. This is a proposed alternative to the various cocktails of medications and the series of medical procedures that one cancer patient has to endure just to slow down the process of cancer growth.
3. Nanotechnology in the area of Medicine
Applying nanotechnology for treatment, diagnosis, monitoring, and control of diseases has
been referred to as “nano medicine”. Although the application of nanotechnology to medicine
appears to be a relatively recent trend, the basic nanotechnology approaches for medical
application date back several decades. The first example of lipid vesicles which later became
known as liposomes were described in 1965 [35]; the first controlled release polymer system of
macromolecules was described in 1976 [36]; the first long circulating stealth polymeric
nano particle was described in 1994 [37]; the first quantum dot bio conjugate was described in
1998 [38, 39]; and the first nanowire nanosenser dates back to 2001 [40]. Recent Studies on new
targeted nano particle contrast agents for early characterization of atherosclerosis and
cardiovascular pathology at the cellular and molecular levels that might represent the next frontier
for combining imaging and rational drug delivery to facilitate personalized medicine [41].
Nanotechnology-based highly efficient markers and precise, quantitative detection devices for
early diagnosis and for therapy monitoring will have a wide influence in patient management, in
improving patient’s quality of life and in lowering mortality rates, in diseases like cancer and
Alzheimer’s disease.
• Multi-functional nanoparticles for cancer therapy
Biodegradable chitosan nanoparticles encapsulating quantum dots were prepared by D. K.
Chatterjee and Y. Zhang, with suitable surface modification to immobilize both tumor targeting
agent and chemokine on their surfaces. The interactions between immune cells and tumor cells
were visualized using optical microscope. Use of Quantum dots in the treatment of cancer is a
great advancement in this area. Quantum dots glow when exposed to UV light. When injected they
seep into cancer tumour. The surgeon can see the glowing tumour. Nanotechnology could be very
helpful in regenerating the injured nerves. During the last decade, however, developments in the
areas of surface microscopy, silicon fabrication, biochemistry, physical chemistry, and
computational engineering have converged to provide remarkable capabilities for understanding,
fabricating and manipulating structures at the atomic level. The rapid evolution of this new science
and the opportunities for its application promise that nanotechnology will become one of the
dominant technologies of the 21st century.
• Nanoscience enables early detection of Alzheimer’s Disease
118
Brain represents one of the most complex systems in biomedicine. With an improved
understanding of brain functioning, better diagnosis and treatment for neurodegenerative diseases
like Alzheimer’s is offered by nanotechnology [42]. Presently, the prevailing problem is early
detection for effective treatment of the disease. An ideal diagnostic tool for Alzheimer’s disease
(AD) must have specificity & sensitivity more than 80% for its early diagnosis & excluding other
causes. Since the neurodegeneration process begins well before AD becomes symptomatic the
potential for early detection is another important characteristic of an ideal diagnostic tool.
Nanotechnology can be the basis of new tools for very early detection of AD. Nanotechnology in
the diagnosis of AD came into light after two articles were published in February 2005. The two
detection approaches proposed in those papers were the Bio-barcode assay (BCA) & Localized
surface plasmon resonance (LSPR) technology [43-44].
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: dri asbestos medicine seminar las vegas, trinity college of medicine st, private school of medicine, ross university college of medicine, bio oxidative medicine foundation website, nanotechnology in medicine docx 2012, college of medicine uic sbms,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
Nanotechnology in medicine - by seminar surveyer - 28-12-2010, 12:11 PM
RE: Nanotechnology in medicine - by seminar class - 01-03-2011, 11:44 AM
RE: Nanotechnology in medicine - by seminar class - 11-03-2011, 04:29 PM
RE: Nanotechnology in medicine - by seminar class - 26-03-2011, 12:39 PM

Forum Jump: