Ovonic unified memory full report
#8

[attachment=8702]
INTRODUCTION
We are now living in a world driven by various electronic equipments. Semiconductors form the fundamental building blocks of the modern electronic world providing the brains and the memory of products all around us from washing machines to super computers. Semi conductors consist of array of transistors with each transistor being a simple switch between electrical 0 and 1. Now often bundled together in there 10's of millions they form highly complex, intelligent, reliable semiconductor chips, which are small and cheap enough for proliferation into products all around us.Identification of new materials has been, and still is, the primary means in the development of next generation semiconductors. For the past 30 years, relentless scaling of CMOS IC technology to smaller dimensions has enabled the continual introduction of complex microelectronics system functions. However, this trend is not likely to continue indefinitely beyond the semiconductor technology roadmap. As silicon technology approaches its material limit, and as we reach the end of the roadmap, an understanding of emerging research devices will be of foremost importance in the identification of new materials to address the corresponding technological requirements.If scaling is to continue to and below the 65nm node, alternatives to CMOS designs will be needed to provide a path to device scaling beyond the end of the roadmap. However, these emerging research technologies will be faced with an uphill technology challenge. For digital applications, these challenges include exponentially increasing the leakage current (gate, channel, and source/drain junctions), short channel effects, etc. while for analogue or RF applications, among the challenges are sustained linearity, low noise figure, power added efficiency and transistor matching. One of the fundamental approaches to manage this challenge is using new materials to build the next generation transistors.
PRESENT MEMORY TECHNOLOGY SCENARIO
As stated, revising the memory technology fields ruled by silicon technology is of great importance. Digital Memory is and has been a close comrade of each and every technical advancement in Information Technology. The current memory technologies have a lot of limitations. DRAM is volatile and difficult to integrate. RAM is high cost and volatile. Flash has slower writes and lesser number of write/erase cycles compared to others. These memory technologies when needed to expand will allow expansion only two-dimensional space. Hence area required will be increased. They will not allow stacking of one memory chip over the other. Also the storage capacities are not enough to fulfill the exponentially increasing need. Hence industry is searching for "Holy Grail" future memory technologies that are efficient to provide a good solution. Next generation memories are trying tradeoffs between size and cost. These make them good possibilities for development.
EMERGING MEMORY TECHNOLOGIES
Many new memory technologies were introduced when it is understood that semiconductor memory technology has to be replaced, or updated by its successor since scaling with semiconductor memory reached its material limit. These memory technologies are referred as 'Next Generation Memories". Next Generation Memories satisfy all of the good attributes of memory. The most important one among them is their ability to support expansion in three-dimensional spaces. Intel, the biggest maker of computer processors, is also the largest maker of flash-memory chips is trying to combine the processing features and space requirements feature and several next generation memories are being studied in this perspective. They include MRAM, FeRAM, Polymer Memory Ovonic Unified Memory, ETOX-4BPC, NRAM etc. One or two of them will become the mainstream.
FUNDAMENTAL IDEAS OF EMERGING MEMORIES
The fundamental idea of all these technologies is the bistable nature possible for of the selected material. FeRAM works on the basis of the bistable nature of the centre atom of selected crystalline material. A voltage is applied upon the crystal, which in turn polarizes the internal dipoles up or down. I.e. actually the difference between these states is the difference in conductivity. Non -Linear FeRAM read capacitor, i.e., the crystal unit placed in between two electrodes will remain in the direction polarized (state) by the applied electric field until another field capable of polarizing the crystal's central atom to another state is applied.
In the case of Polymer memory data stored by changing the polarization of the polymer between metal lines (electrodes). To activate this cell structure, a voltage is applied between the top and bottom electrodes, modifying the organic material. Different voltage polarities are used to write and read the cells. Application of an electric field to a cell lowers the polymer's resistance, thus increasing its ability to conduct current; the polymer maintains its state until a field of opposite polarity is applied to raise its resistance back to its original level. The different conductivity States represent bits of information.
In the case of NROM memory ONO stacks are used to store charges at specific locations. This requires a charge pump for producing the charges required for writing into the memory cell. Here charge is stored at the ON junctions.Phase change memory also called Ovonic unified memory (OUM), is based on rapid reversible phase change effect in materials under the influence of electric current pulses. The OUM uses the reversible structural phase-change in thin-film material (e.g., chalcogenides) as the data storage mechanism. The small volume of active media acts as a programmable resistor between a high and low resistance with > 40X dynamic range. Ones and zeros are represented by crystalline versus amorphous phase states of active material. Phase states are programmed by the application of a current pulse through a
MOSFET, which drives the memory cell into a high or low resistance state, depending on current magnitude. Measuring resistance changes in the cell performs the function of reading data. OUM cells can be programmed to intermediate resistance values; e.g., for multistate data storage.
MRAMs are based on the magnetoresistive effects in magnetic materials and structures that exhibit a resistance change when an external magnetic field is applied. In the MRAM, data are stored by applying magnetic fields that cause magnetic materials to be magnetized into one of two possible magnetic states. Measuring resistance changes in the cell compared to a reference performs reading data. Passing currents nearby or through the magnetic structure creates the magnetic fields applied to each cell.
OVONIC UNIFIED MEMORY
Among the above-mentioned non-volatile Memories, Ovonic Unified Memory is the most promising one. "Ovonic Unified Memory" is the registered name for the non-volatile memory based on the material called chalcogenide.
The term "chalcogen" refers to the Group VI elements of the periodic table. "Chalcogenide" refers to alloys containing at least one of these elements such as the alloy of germanium, antimony, and tellurium discussed here. Energy Conversion Devices, Inc. has used this particular alloy to develop a phase-change memory technology used in commercially available rewriteable CD and DVD disks. This phase change technology uses a thermally activated, rapid, reversible change in the structure of the alloy to store data. Since the binary information is represented by two different phases of the material it is inherently non-volatile, requiring no energy to keep the material in either of its two stable structural states.
The two structural states of the chalcogenide alloy, as shown in Figure 1, are an amorphous state and a polycrystalline state. Relative to the amorphous state, the polycrystalline state shows a dramatic increase in free electron density, similar to a metal. This difference in free electron density gives rise to a difference in reflectivity and resistivity. In the case of the re-writeable CD and DVD disk technology, a laser is used to heat the material to change states. Directing a low-power laser at the material and detecting the
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: ovonic unified memory ppt free download, seminar on ovonic unified memory with full report pdf, hardened, ovonic unifed memory, duo bias, ovonic unified memory seminar report ppt, unified communication,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
RE: Ovonic unified memory full report - by Nirja - 28-07-2010, 10:24 AM
RE: Ovonic unified memory full report - by seminar class - 16-02-2011, 03:53 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Transparent electronics full report seminar surveyer 8 25,273 04-04-2018, 07:54 AM
Last Post: Kalyani Wadkar
  wireless charging through microwaves full report project report tiger 90 72,373 27-09-2016, 04:16 AM
Last Post: The icon
  Wireless Power Transmission via Solar Power Satellite full report project topics 32 51,166 30-03-2016, 03:27 PM
Last Post: dhanabhagya
  surge current protection using superconductors full report computer science technology 13 27,497 16-03-2016, 12:03 AM
Last Post: computer science crazy
  paper battery full report project report tiger 57 62,740 16-02-2016, 11:42 AM
Last Post: Guest
  IMOD-Interferometric modulator full report seminar presentation 3 11,766 18-07-2015, 10:14 AM
Last Post: [email protected]
  digital jewellery full report project report tiger 36 67,541 27-04-2015, 01:29 PM
Last Post: seminar report asees
  LOW POWER VLSI On CMOS full report project report tiger 15 22,726 09-12-2014, 06:31 PM
Last Post: seminar report asees
  eddy current brake full report project report tiger 24 34,131 14-09-2014, 08:27 AM
Last Post: Guest
  dense wavelength division multiplexing full report project reporter 3 4,588 16-06-2014, 07:00 PM
Last Post: seminar report asees

Forum Jump: