F1 Track Design and Safety
#5
[attachment=7401]
Presented By:ABHISHEK.BSEMINAR REPORT ON
F1 TRACK DESIGN AND SAFETY

INTRODUCTION

Success is all about being in the right place at the right time ….. and the axiom is a guiding principle for designers of motorsport circuits. To avoid problems you need know where and when things are likely to go wrong before cars turn a wheel –and anticipating accidents is a science.

Take barriers, for example, there is little point erecting them in the wrong place –but predicting the right place is a black art. The Federation Internationale de l’Automobile (FIA) has developed bespoke software, the Circuit and Safety Analysis System (CSAS), to predict problem areas on F1 circuits.

Where and when cars leave circuits is due to the complex interaction between their design, the driver’s reaction and the specific configuration of the track, and the CSAS allows the input of many variables-lap speeds, engine power curves, car weight changes, aerodynamic characteristics etc –to predict how cars may leave the circuit at particular places. The variables are complex. The impact point of a car continuing in a straight line at a corner is easy to predict, but if the driver has any remaining control and alters the car’s trajectory, or if a mechanical fault introduces fresh variables, its final destination is tricky to model.

Modern tyre barriers are built of road tyres with plastic tubes sandwiched between them. The side facing the track is covered with conveyor belting to prevent wheels becoming snagged and distorting the barrier. The whole provides a deformable ‘cushion’ a principle that has found its way to civilian roads. Barriers made of air filled cells, currently under investigation may be the final answer. Another important safety factor is the road surface. Racing circuits are at the cutting edge of surface technology, experimenting with new materials for optimum performance.
CONCEPTS FAMILIARIZED :

 TRACK DESIGN.

The tracks used in motor sport all are designed to meet certain standards. All design criteria, for curves and straight sections, do not mean the actual track itself, but the actual trajectory followed by the cars whilst racing. Track width on a permanent circuit should be at least 12 metres and should not exceed 15 metres. This avoids bad congestion in corners by limiting the width of the approach to the corner, and having a wide enough track through the corners. There should be 3m minimum clear space along both sides of the track, usually consisting of grass. The maximum length of any new permanent circuit should not exceed 7km to allow drivers to be able to familiarize themselves with all corners on the track. The minimum length of a Formula One circuit will not be less then 3.5km, with the race being no longer than 2h45min. Cross fall across the track for drainage purposes should not exceed 3%, or be less than 1.5%, either from edge to edge or from the centerline to each edge.
The geometry of the track should be designed using the formulae set out by the FIA in Appendix O to the International Sporting Code section 7.


 EMERGENCY RESPONSE

The emergency response during a motor sport event is one of the most important aspects of safety. When all other safety aspects such as vehicle, and track safety have no more to offer a driver, any further help must come from emergency services. It is vital that drivers can be extracted from damaged vehicles and given the best possible medical care as soon as possible. Any international event should be supervised from a race control centre. This room should be in contact with all marshaling and observation point at all times, and should also have access to emergency services from outside the race such as a helicopter for an evacuation. The Clerk of the Course supervises all emergency procedures from here, after personally ensuring the road is clear of obstacles, is closed to the public and that all observers, marshals and emergency personnel and equipment are in the correct positions.



 CIRCUIT AND SAFETY ANALYSIS SYSTEM (CSAS)

Predicting the trajectory and velocity of a racing car when it is driven at the limit within the confines of a racing track, is now the subject of a great deal of analytical work by almost all teams involved in racing at all levels. However, predicting the trajectory and velocity of a car once the driver has lost control of it has not been something the teams have devoted a great deal of time to. This can now also be analyzed though in the same sort of detail, to assess the safety features of the circuits on which it is raced. The two tasks are very different, and the FIA had to start almost from scratch when it set out to develop software for its Circuit and Safety Analysis System (CSAS).

 BARRIERS

The ideal crash barrier is no barrier at all. However, the only applications of this in motor sport are at Bonneville and the Black Rock desert, used for Land Speed Record attempts. At these sites there are several miles in every direction between the track and the mountains and, even through a telephoto lens the vehicles seem a very long way away from the spectators and viewers. Barriers are necessary on race circuits to enable spectators and TV cameras to get close enough to the action, without being exposed to the danger of being hit by an out of control car

In motorsport, a safety car or pace car is a car which limits the speed of competing cars on a racetrack in the case of a caution period such as an obstruction on the track. During a caution period the safety car enters the track ahead of the leader. With few exceptions, competitors are not allowed to pass the safety car or other competitors during a caution period, and the safety car leads the field at a pre-determined safe speed, which may vary by series and circuit. At the end of the caution period, the safety car leaves the track and the competitors may resume racing.
CONCLUSION


The purpose of this seminar is to show how the advanced technology of the world’s fastest and largest spectator-sport can be used in the normal superhighways and expressways setting standards of safety for the general public who drive on the highways. Use of barriers similar to those used in formula one can reduce the amount of injury in case of accidents on these highways. Even the use of CSAS (Circuit and Safety Analysis System) can be used to build safer highways.

As for F1 different circuits and different conditions present challenges for all connected with the engineering side of F1 and it is those who predict and cope best with these complications who eventually triumph.

Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: dont track me google, f1 track disign and safty ppt, f1 track design and safety ppt seminar, track me guam, track cheak book, where will the f1 track be in austin, f1 track design and safety research papers pdf,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
RE: F1 Track Design and Safety - by Jaydeep - 09-02-2010, 02:14 PM
RE: F1 Track Design and Safety - by projectsofme - 18-12-2010, 10:54 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  NC and CNC machines and Control Programming project report helper 1 3,275 12-05-2018, 10:11 AM
Last Post: Guest
  cooling system in i.c. engine,design aproach attar.raj 7 7,926 08-07-2015, 02:34 PM
Last Post: seminar report asees
Thumbs Up Design, Analysis, Fabrication And Testing Of A Composite Leaf Spring computer science crazy 3 3,173 05-09-2013, 11:43 AM
Last Post: computer topic
  Design & Fabrication of Hydraulic Crane seminar class 2 5,715 26-04-2013, 04:19 PM
Last Post: computer topic
  Design, Analysis, Fabrication And Testing Of A Composite Leaf Spring computer science crazy 6 9,614 06-04-2013, 10:01 AM
Last Post: computer topic
  F1 Track Design and Safety computer science crazy 5 7,877 08-09-2012, 12:37 AM
Last Post: [email protected]
  Autonomous Military Robotics:   Risk, Ethics, and Design      computer girl 0 1,393 12-06-2012, 12:34 PM
Last Post: computer girl
  Strength based and Displacement Based Design method for steel computer girl 1 1,246 11-06-2012, 10:51 AM
Last Post: computer girl
  Passive Magnetic Bearing: Design Becomes Reality computer girl 0 1,272 09-06-2012, 01:14 PM
Last Post: computer girl
  RAM-AIR PARACHUTE DESIGN computer girl 0 672 08-06-2012, 01:44 PM
Last Post: computer girl

Forum Jump: