shape memory alloys full report
#3
[attachment=3522]


Presented By:
VIVEKANANDA.S.HIREMATH


SHAPE MEMORY ALLOYS

The development of new materials is of central importance in every technological advancement.
Our expectation of higher functionality along with higher reliability from our technology has made the use of advanced materials inevitable.
The current trend is to replace conventional materials by what may be called functional materials.



NEED

With the increase in the complexity of the physical systems, there is a need to incorpo¬rate biological capabilities like self adaptability, self sensing, memory and feedback into the systems.
Shape memory alloys are functional materials exhibiting many unique properties. By ex-ploitation of these unique properties it is possible to design systems that are more compact, more automatic and possess previously unthinkable capabilities.


DEFINITION

Shape Memory Alloys (SMAs) is applied to a group of metallic materials that when subjected to appropriate thermal procedure demonstrate the ability to return to some 'previously remembered shape.
This means that it is possible to imprint some shape in the memory of these materials.
This ability of 'memorising' a particular external shape is a direct consequence of a thermodynamically reversible transformation of the alloy's crystal structure.

In general, there are two crystal structures or phases associated with a shape memory alloy. The phase corresponding to higher temperature is called the 'austenite phase' and the one corresponding to lower temperature is called the 'martensite phase'.
In addition to the temperature induced shape memory effect, SMAs also show 'superelastic effect'. This means that if the material is kept at constant temperature in the austenite phase and mechanically loaded, it shows capability of recovering large strains. The yield strain in superelastic effect is nearly 30 times that of normal steel.



MATERIALS SHOWING SHAPE MEMORY

Most common class of shape memory alloys is Nitinol (Ni-Ti alloys). Other alloys showing this effect include CuZn, NiAl, NiMn, CuZnAl, CuZnSi, CuZnGa, NiMnAl, NiMnCr, NiMnTi, NiTiFe, MnFeSi, AuCd
HISTORY
The earliest recorded observation of the shape memory effect was by Chang and Read in 1932. They noted the reversible change in the crystal structure of AuCd.
The real breakthrough came in 1962 when the effect was found in equiatomic NiTi. Nickel Titanium alloys.
A generic name of this group of alloys was coined as Nitinol. Nitinol stands for Nickel Ti-tanium Naval Ordinance Laboratory. In 1980, it was used by NASA in an Earth orbiting space station.



THE SHAPE MEMORY EFFECT: MECHANISM

The martensitic transformations involve shearing deformation resulting in cooperative diffusionless atomic movement. This means that the atoms in the austenite phase are not shifted independently but undergo shearing deformation as a single unit while maintaining relative neighborhood.
A one-to-one lattice correspondence is maintained be¬tween the atoms in the parent phase and the transformed phase.



HYSTERESIS LOOP

The phase transformation from martensite to austenite and back again, are described by a wide
hysteresis loop, shown in Fig.
The phase transitions are characterised by four
transformation temperatures:
(i) As, the austenite start temperature; (ii) Af, the austenite finish temperature;
(iii) Ms, the martensite start temperature; and (iv) Mf, the martensite finish temperature.
The two phases of NiTi and their transformations are depicted by the 2-dimensional matchbox model in Figure.
The stronger austenite phase, also known as the parent phase,has a cubic atomic structure and is represented by squares in Fig.
As the alloy cools to the martensite phase in a process called twinning, the crystal structure becomes rhomboidal and is represented by collapsed matchboxes.
When heated again, it returns to its original cubic form in the parent phase.



SHAPE MEMORY EFFECT : CHARACTERISTICS

One way and two way shape memory effect
(a) Adding a reversible deformation for the one-way effect or severe deformation with an irreversible amount for the two-way.
(b) heating the sample
© and cooling it again
(d) With the one way effect, cooling from high temperatures does not cause a macroscopic shape change.
The two-way shape memory effect is the effect that the material remembers two different shapes: one at low temperatures, and one at the high temperature shape.


STRESS STRAIN CURVE

When an external stress is applied to the alloy when it is fully martensitic, the alloy deforms elastically
(curve 1).
If the stress exceeds the martensite yield strength, detwinning occurs and a large non-elastic deformation will result until the structure is fully detwinned
(curve 2).
The martensite is strain recoverable up to this stage. However, further increase in stress causes the detwinned structure to deform (curve 3 ) until the external stress begins to break the atomic bonds between the martensite layers, resulting in permanent plastic deformation
For the austenite phase however, it has a higher yield strength compared to martensite. Initially, the alloy will behave elastically (curve 1 )until the stress exceeds its yield strength.
From that point onwards, plastic deformation will ensue causing unrecoverable stretching upon unloading (curves 2 and 3)


EFFECTS OF ADDITIVES AND IMPURITIES

Fe substitution in Nitinol lowers the transformation temperatures substantially. Cu does not change the shape memory properties, but it causes a reduction in hysteresis (As - Ms). Also, it improves the tensile strength and other mechanical characteristics .
The introduction of carbon in Nitinol affects the Ms temperature. TiC precipitate forms and cause slight degradation in tensile properties but improves fracture properties by ren-dering increase in fracture stress and strain
Excess additions of Ni (upto 1%) in Nitinol strongly depresses the transformation tem-perature and increase the yield strength in the austenite.
Oxygen, when higher than 0.61%, may cause an intermediate phase in Nitinol.
Nitrogen implantation improves the corrosion resistance of TiNi but does not affects the
shape memory behaviour .
Pseudo-elasticity occurs in shape memory alloys when the alloy is completely composed of Austenite (temperature is greater than AF). Unlike the shape memory effect, pseudo-elasticity occurs without a change in temperature. The load on the shape memory alloy is increased until the Austenite becomes transformed into Martensite simply due to the loading; this process is shown in Figure


APPLICATION

The Shape memory effect is currently being implemented in:
Coffeepots
The space shuttle
Thermostats
Vascular Stents
Hydraulic Fittings (for Airplanes)
Some examples of applications in which pseudo elasticity is used are:
Eyeglass Frames
Undergarment
Medical Tools
Cellular Phone Antennae
Orthodontic Arches
EXAMPLES


Aerospace Applications

Transportation of large sophisticated apparatus such as a radio antenna to space .
SMA wire tendons can be used as embedded actuator elements to control the shapes of parts such as elevators .
With the use of quick connect-disconnect connectors, it is possible to have non-explosive triggering of auxiliary fuel tank and satellite release.
Industrial Applications

Connectors and Fasteners
Monolithic Microgripper
robotics actuators and micromanupulators
Actuator for flow “Control gas valve


BIOMEDICAL APPLICATIONS

Orthodontic Archwires: These use the superelasticity property of SMAs. When deflect¬ed, these superelastic archwires will return gradually to their original shape exerting a small and nearly constant force on the misaligned teeth.
A prime application of the free recovery property of SMAs is the blood clot filter [21]. The TiNi wire is first cooled and introduced into the vein. As it warms up to the blood temperature, it forms a filter inside the vein and catches the passing clots.


ADVANTAGES

mechanical simplicity .
high power to weight ratio.
small size.
clean, silent, spark free operation.


DISADVANTAGES

There are still some difficulties with shape memory alloys that must be overcome before they can live up to their full potential. These alloys are still relatively expensive to manufacture and machine compared to other materials such as steel and aluminum. Most SMA's have poor fatigue properties; this means that while under the same loading conditions (i.e. twisting, bending, compressing) a steel component may survive for more than one hundred times more cycles than an SMA element


CONCLUSION

Electrical resistance provides an indication of
SMA temperature that is sufficient for preventing overheating.
Rapid heating via the proposed method yields a substantial increase in speed, without changing the cooling regime.
Next step: A better motion controller



REFERENCES

Y. H. Teh 2003. A Control System for Achieving Rapid Controlled Motions From Shape Memory Alloy (SMA) Actuator Wires. B.Eng. Honours Thesis, Dept. Engineering, The Australian National University.
R. Featherstone & Y. H. Teh 2004. Improving the Speed of Shape Memory Alloy Actuators by Faster Electrical Heating. Int. Symp. Experimental Robotics.
Y. H. Teh & R. Featherstone 2004. A New Control System for Fast Motion Control of SMA Actuator Wires. Shape Memory And Related Technologies.
http://dynalloyTechnicalData.html.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Tagged Pages: seminar shape memory alloys, shape memory alloys full report project, shape memory alloys seminar report pdf, shape memory alloys seminar report,
Popular Searches: shape detection java**using flash free download, rastrya sixa niti 1986, 1986 ki siksha niti, honours part1, seminario v de jacques lacan, in shape memory board, ppt of shape memory alloys,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
RE: shape memory alloys full report - by seminar presentation - 14-05-2010, 02:50 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  NanoTechnology (Download Full Seminar Report) Computer Science Clay 39 59,166 16-08-2018, 01:41 PM
Last Post: pradeepkumar.M
  magnetic refrigeration full report project report tiger 46 47,005 20-06-2018, 11:43 PM
Last Post: Guest
  TQM Total quality management full report project report tiger 5 14,368 18-09-2016, 08:41 PM
Last Post: velraj
  thermoacoustic refrigeration full report project report tiger 12 20,231 06-03-2015, 06:28 PM
Last Post: Guest
  the gurney flap full report project report tiger 1 3,702 04-12-2014, 02:02 PM
Last Post: pricemuzDet
  exhaust gas recirculation full report project report tiger 8 11,047 05-11-2014, 09:06 PM
Last Post: jaseela123d
  IMPROVEMENT OF THERMAL EFFICIENCY BY RECOVERY OF HEAT FROM IC ENGINE EXHAUST full rep project report tiger 7 8,872 18-10-2014, 10:35 PM
Last Post: jaseela123d
  reverse engineering full report project report tiger 3 6,675 11-10-2014, 10:49 PM
Last Post: Guest
  sensotronic brake control full report computer science technology 13 24,531 07-10-2014, 10:01 PM
Last Post: seminar report asees
  anti lock braking system full report project report tiger 6 8,796 23-09-2014, 07:25 PM
Last Post: seminar report asees

Forum Jump: