viva question answer of flywheel experiment pdf
#1

MY NAME IS HAFSA SALI N I'M A STUDENT OF KARACHI UNIVERSITY IN WHICH I STUDY APPLIED CHEMISTRY AND CHEMICAL TECHNOLOGY SO I WANT A VIVA QUESTION ANSWER OF FLY WHEEL EXPERIMENT
my name is hafsa salim and im a student o fkarachi university in which i study applied chemistry and technology so i want a viva question answer flywheel
Reply
#2
viva question answer of flywheel experiment pdf

Aim:

To determine the moment of inertia of a flywheel.

Apparatus:

Fly wheel, weight hanger, slotted weights, stop watch, metre scale.

Theory:

The flywheel consists of a heavy circular disc/massive wheel fitted with a strong axle projecting on either side.The axle is mounted on ball bearings on two fixed supports. There is a small peg on the axle. One end of a cord is loosely looped around the peg and its other end carries the weight-hanger.

Let "m" be the mass of the weight hanger and hanging rings (weight assembly).When the mass "m" descends through a height "h", the loss in potential energy is

«math xmlns=¨http://w31998/Math/MathML¨»«msub»«mi»P«/mi»«mrow»«mi»l«/mi»«mi»o«/mi»«mi»s«/mi»«mi»s«/mi»«/mrow»«/msub»«mo»=«/mo»«mi»m«/mi»«mi»g«/mi»«mi»h«/mi»«/math»
The resulting gain of kinetic energy in the rotating flywheel assembly (flywheel and axle) is
«math xmlns=¨http://w31998/Math/MathML¨»«msub»«mi»K«/mi»«mrow»«mi»f«/mi»«mi»l«/mi»«mi»y«/mi»«mi»w«/mi»«mi»h«/mi»«mi»e«/mi»«mi»e«/mi»«mi»l«/mi»«/mrow»«/msub»«mo»=«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi»I«/mi»«msup»«mi»§#969;«/mi»«mn»2«/mn»«/msup»«/math»
Where
I -moment of inertia of the flywheel assembly
ω-angular velocity at the instant the weight assembly touches the ground.

The gain of kinetic energy in the descending weight assembly is,
«math xmlns=¨http://w31998/Math/MathML¨»«msub»«mi»K«/mi»«mrow»«mi»w«/mi»«mi»e«/mi»«mi»i«/mi»«mi»g«/mi»«mi»h«/mi»«mi»t«/mi»«mo»§nbsp;«/mo»«/mrow»«/msub»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi»m«/mi»«msup»«mi»v«/mi»«mn»2«/mn»«/msup»«/math»
Where v is the velocity at the instant the weight assembly touches the ground.

The work done in overcoming the friction of the bearings supporting the flywheel assembly is

«math xmlns=¨http://w31998/Math/MathML¨»«msub»«mi»W«/mi»«mrow»«mi»f«/mi»«mi»r«/mi»«mi»i«/mi»«mi»c«/mi»«mi»t«/mi»«mi»i«/mi»«mi»o«/mi»«mi»n«/mi»«/mrow»«/msub»«mo»=«/mo»«mo»§nbsp;«/mo»«mi»n«/mi»«msub»«mi»W«/mi»«mi»f«/mi»«/msub»«/math»
Where
n - number of times the cord is wrapped around the axle
Wf - work done to overcome the frictional torque in rotating the flywheel assembly completely once
Therefore from the law of conservation of energy we get
«math xmlns=¨http://w31998/Math/MathML¨»«msub»«mi»P«/mi»«mrow»«mi»l«/mi»«mi»o«/mi»«mi»s«/mi»«mi»s«/mi»«mo»§nbsp;«/mo»«/mrow»«/msub»«mo»=«/mo»«msub»«mi»K«/mi»«mrow»«mi»f«/mi»«mi»l«/mi»«mi»y«/mi»«mi»w«/mi»«mi»h«/mi»«mi»e«/mi»«mi»e«/mi»«mi»l«/mi»«mo»§nbsp;«/mo»«/mrow»«/msub»«mo»+«/mo»«msub»«mi»K«/mi»«mrow»«mi»w«/mi»«mi»e«/mi»«mi»i«/mi»«mi»g«/mi»«mi»h«/mi»«mi»t«/mi»«/mrow»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«msub»«mi»W«/mi»«mrow»«mi»f«/mi»«mi»r«/mi»«mi»i«/mi»«mi»c«/mi»«mi»t«/mi»«mi»i«/mi»«mi»o«/mi»«mi»n«/mi»«/mrow»«/msub»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»(«/mo»«mn»1«/mn»«mo»)«/mo»«/math»

On substituting the values we get
«math xmlns=¨http://w31998/Math/MathML¨»«mi»m«/mi»«mi»g«/mi»«mi»h«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi»I«/mi»«msup»«mi»§#969;«/mi»«mn»2«/mn»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi»m«/mi»«msup»«mi»v«/mi»«mn»2«/mn»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mi»n«/mi»«msub»«mi»W«/mi»«mi»f«/mi»«/msub»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»(«/mo»«mn»2«/mn»«mo»)«/mo»«/math»
Now the kinetic energy of the flywheel assembly is expended in rotating N times against the same frictional torque. Therefore
«math xmlns=¨http://w31998/Math/MathML¨»«mi»N«/mi»«msub»«mi»W«/mi»«mi»f«/mi»«/msub»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi»I«/mi»«msup»«mi»§#969;«/mi»«mn»2«/mn»«/msup»«mo»§nbsp;«/mo»«/math»and «math xmlns=¨http://w31998/Math/MathML¨»«msub»«mi»W«/mi»«mi»f«/mi»«/msub»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mn»1«/mn»«mrow»«mn»2«/mn»«mi»N«/mi»«/mrow»«/mfrac»«mi»I«/mi»«msup»«mi»§#969;«/mi»«mn»2«/mn»«/msup»«/math»
If r is the radius of the axle, then velocity v of the weight assembly is related to r by the equation
«math xmlns=¨http://w31998/Math/MathML¨»«mi»v«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mi»§#969;«/mi»«mi»r«/mi»«/math»
Substituting the values of v and Wf we get:
«math xmlns=¨http://w31998/Math/MathML¨»«mi»m«/mi»«mi»g«/mi»«mi»h«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi»I«/mi»«msup»«mi»§#969;«/mi»«mn»2«/mn»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi»m«/mi»«msup»«mi»r«/mi»«mn»2«/mn»«/msup»«msup»«mi»§#969;«/mi»«mn»2«/mn»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mfrac»«mi»n«/mi»«mi»N«/mi»«/mfrac»«mo»§#215;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi»I«/mi»«msup»«mi»§#969;«/mi»«mn»2«/mn»«/msup»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»(«/mo»«mn»3«/mn»«mo»)«/mo»«/math»

Now solving the above equation for I
«math xmlns=¨http://w31998/Math/MathML¨»«mi»I«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mfrac»«mrow»«mi»N«/mi»«mi»m«/mi»«/mrow»«mrow»«mi»N«/mi»«mo»+«/mo»«mi»n«/mi»«/mrow»«/mfrac»«mfenced»«mrow»«mfrac»«mrow»«mn»2«/mn»«mi»g«/mi»«mi»h«/mi»«/mrow»«msup»«mi»§#969;«/mi»«mn»2«/mn»«/msup»«/mfrac»«mo»-«/mo»«msup»«mi»r«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»(«/mo»«mn»4«/mn»«mo»)«/mo»«/math»
Where, I = Moment of inertia of the flywheel assembly
N = Number of rotation of the flywheel before it stopped
m = mass of the rings
n = Number of windings of the string on the axle
g = Acceleration due to gravity of the environment.
h = Height of the weight assembly from the ground.
r = Radius of the axle.

Now we begin to count the number of rotations, N until the flywheel stops and also note the duration of time t for N rotation. Therefore we can calculate the average angular velocity «math xmlns=¨http://w31998/Math/MathML¨»«msub»«mi»§#969;«/mi»«mrow»«mi»a«/mi»«mi»v«/mi»«mi»e«/mi»«mi»r«/mi»«mi»a«/mi»«mi»g«/mi»«mi»e«/mi»«mo»§nbsp;«/mo»«/mrow»«/msub»«/math»in radians per second.
«math xmlns=¨http://w31998/Math/MathML¨»«msub»«mi»§#969;«/mi»«mrow»«mi»a«/mi»«mi»v«/mi»«mi»e«/mi»«mi»r«/mi»«mi»a«/mi»«mi»g«/mi»«mi»e«/mi»«/mrow»«/msub»«mo»§nbsp;«/mo»«mo»=«/mo»«mfrac»«mrow»«mn»2«/mn»«mi»§#960;«/mi»«mi»N«/mi»«/mrow»«mi»t«/mi»«/mfrac»«/math»
Since we are assuming that the torsional friction Wf is constant over time and angular velocity is simply twice the average angular velocity
«math xmlns=¨http://w31998/Math/MathML¨»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mi»§#969;«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mrow»«mn»4«/mn»«mi»§#960;«/mi»«mi»N«/mi»«/mrow»«mi»t«/mi»«/mfrac»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»§nbsp;«/mo»«mo»(«/mo»«mn»5«/mn»«mo»)«/mo»«/math»

Applications:

Flywheels can be used to store energy and used to produce very high electric power pulses for experiments, where drawing the power from the public electric network would produce unacceptable spikes. A small motor can accelerate the flywheel between the pulses.

The phenomenon of precession has to be considered when using flywheels in moving vehicles. However in one modern application, a momentum wheel is a type of flywheel useful in satellite pointing operations, in which the flywheels are used to point the satellite's instruments in the correct directions without the use of thrusters rockets.

Flywheels are used in punching machines and riveting machines. For internal combustion engine applications, the flywheel is a heavy wheel mounted on the crankshaft. The main function of a flywheel is to maintain a near constant angular velocity of the crankshaft.

Procedure for doing Simulator

Choose any desired environment by clicking on the ‘combo box’.
Adjust the sliders to have suitable dimensions for flywheel arrangement.
Click on ‘Release fly wheel’ to start the experiment.
No of revolutions (N) of the flywheel, after the loop slips off from peg is indicated on the side of axle.
The time taken by flywheel to come to rest is noted from stop watch.
Repeat the experiment for different values of variables.


Procedure for doing Real Lab

The length of the cord is carefully adjusted, so that when the weight-hanger just touches the ground,the loop slips off the peg.
A suitable weight is placed in the weight hanger
A chalk mark is made on the rim so that it is against the pointer when the weight hanger just touches the ground.
The other end of the cord is loosely looped around the peg keeping the weight hanger just touching the ground.
The flywheel is given a suitable number (n) of rotation so that the cord is wound round the axle without overlapping.
The height (h) of the weight hanger from the ground is measured.
The flywheel is released.
The weight hanger descends and the flywheel rotates.
The cord slips off from the peg when the weight hanger just touches the ground.By this time the flywheel would have made n rotations.
A stop clock is started just when the weight hanger touches the ground.
The time taken by the flywheel to come to a stop is determined as t seconds.
The number of rotations (N) made by the flywheel during this interval is counted.
The experiment is repeated by changing the value of n and m.
Reply
#3

flywheel explanations and its classifications
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Tagged Pages: viva questions on flywheel experiment, flywheel experiment viva questions, viva questions from the experiments to find moment of inertia of fly wheel, flywheel experiment viva question, viva for flywheel experiment, viva questionms for flywheel, flywheel viva questions with answers pdf,
Popular Searches: viva questions of physics experiment flywheel, viva question in digital electronics pdf, viva question answer of flywheel experiment pdf, flywheel experiment viva ques ans, mathml compatibility, viva question answer for digital communication lab, stupidstudy physics viva question and answer vtu,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
Photo pdf download of tata steel apprentice exam previous year solved question papers 4 12,323 08-08-2018, 08:23 PM
Last Post: Guest
  pdf k53 learners test questions and answers 2015 pdf 2 11,122 18-05-2018, 06:21 PM
Last Post: Guest
  surveying 2 lab viva questions with answers pdf free download 3 1,386 26-04-2017, 09:47 AM
Last Post: jaseela123d
  upcatet previous year question paper pdf 2 2,046 06-04-2017, 11:28 AM
Last Post: Guest
  physics practical viva questions for bsc 4 1,944 15-02-2017, 02:06 PM
Last Post: jaseela123d
  solved question papers of tisco apprentice 2 1,307 27-07-2016, 11:03 AM
Last Post: seminar report asees
  questions asked in viva on topic inventory management 2 1,119 23-07-2016, 02:55 PM
Last Post: jaseela123d
  automatic toll collection system using rfid viva questions 2 921 23-07-2016, 10:10 AM
Last Post: jaseela123d
  tata apprentice question paper solved 2 1,334 22-07-2016, 04:24 PM
Last Post: dhanabhagya
  pgcet question papers for cse of gujarat 2 865 22-07-2016, 03:04 PM
Last Post: visalakshik

Forum Jump: