Nanosystem Design with Dynamic Collision Detection for Autonomous Nanorobot Motion
#1

Nanosystem Design with Dynamic Collision Detection for Autonomous Nanorobot Motion Control using Neural Network
[attachment=13875]
Abstract:
The authors present a new approach using advanced graphics simulations for the problem of nano-assembly automation and its application in medicine using collective robotics. The problem under study concentrates its main focus on autonomous control for nanorobot teams coordination as a suitable way to perform a large range of tasks and assembly manipulation in a complex environment. The presented paper summarizes distinct aspects of some techniques required to achieve a successful nano-planning system design for a large number of cooperating autonomous agents and illustrates their three dimensional visualization in real time.
Keywords: Virtual Reality, Physically Based Simulation, NanoCAD, Motion Control, Collective Nanorobotics Behavior, Nanomedicine.
•Â 1. INTRODUCTION
The starting point of nanotechnology to achieve the main goal of building nanoscale systems is the development of autonomous molecular machine systems. The presented paper describes the design and simulation of autonomous multi-robot teams operating at atomic scales with distinct assembly tasks. Teams must cooperate with each other in order to achieve a productive result in assembling biomolecules into larger biomolecules. These biomolecules will be delivered to “organs” (into a set of predefined organ inlets), and such deliveries must also be coordinated in time.
Building patterns and manipulating atoms with the use of Scanning Probe Microscopes (SPM) as in Atomic Force Microscopy and Scanning Tunneling Microscopy [19] is a promising approach for the construction of nanoelectromechanical systems (NEMS) with 3D precision at up to 0.01 nm resolution. However, these manual manipulations require much time and at present such repetitive tasks give imprecise results when performed manually on a large number of molecules. Approaches for nano-planning systems have been presented [19] as a first step towards automating 2D assembly tasks in nanorobotics, and the possible use of artificial intelligence as the appropriate means to enable some aspects of intelligent behaviour for the control of nanorobots in molecular manufacturing automation has been discussed in the nano community [08]. Theoretical work in molecular manufacturing has emphasized the need for very small and very accurate manipulators which simultaneously have a wide range of motion to enable the task of assembling molecular components [10]. More recent work in the possible automation of nanoscale manipulation has produced a fully autonomous motion manipulator system capable of performing 200,000 accurate measurements per second at the atomic scale [20].
•Â 2. NANOMEDICINE
The principal focus in medicine is going to shift from medical science to medical engineering, where the design of medically-active microscopic machines will be the consequent result of the techniques provided from human molecular structure knowledge derived during the 20th (and the beginning of the 21st) century [11]. For the feasibility of such achievements in nanomedicine [11] two primary capabilities are required: fabrication of parts and assembly of parts. Through the use of different approaches such as biotechnology, supramolecular chemistry, and scanning probes, both capabilities had been demonstrated in limited fashion as early as 1998 [11]. Despite quantum effects which impose a relative uncertainty to electron positions, such objections are resolved by recognizing that the quantum probability function of electrons in atoms tends to drop off exponentially with distance outside the atom, giving atoms a moderately sharp "edge". Even in most liquids at their boiling points, each molecule is free to move only ~0.07 nm from its average position [11]. Recent developments in the field of biomolecular computing [01] have demonstrated positively the feasibility of processing logic tasks by bio-computers [14], which is a promising first step to enable future nanoprocessors with increasing complexity, and nanoscale information storage and data processing capacity, which could be considered as an indispensable component of a real autonomous nanosystem. Other advances in the sense of building biosensors [25] and nano-kinetic devices [24] have advanced recently too, which could be considered as well a prerequisite for making nano-automation feasible and enabling nanorobotics control and locomotion. Many classical objections to the feasibility of nanotechnology, such as quantum mechanics, thermal motions and friction, have already been considered and resolved [10]. The presented nanorobot will be required to perform a pre-established set of tasks in the human body as is a ribosome, which is a natural molecular machine system [11].
•Â 3. PROPOSED DESIGN
A multi-robot molecular machine system could be described as a system to perform molecular manufacturing at the atomic scale, whose constituent entities are capable of cooperating collectively. Three main design approaches for nano manipulation in the liquid or air environments are: robotic arm, Stewart platform and a five-strut crank model. For our experiments we chose nano-manipulation in a liquid environment, which is most relevant within the presented application in nanomedicine. It was demonstrated that computation is relatively cheap for macroscale robotic actuators while arm motion is relatively cheap for nanoscale robotic actuators. Thus the moment-by-moment computer control of arm trajectories is the appropriate paradigm for macroscale robots, but not for nanoscale robots [11]. For nanoscale robots, the appropriate manipulator control is often trajectory trial and error, also known as sensor based motion control [16].
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: nanorobot applications, motion detection camera, nanorobot design network, nanorobot for brain aneurysm, collision detection algorithms, nanorobot cancer, collision detection in railways using wimax,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  Platform Autonomous Custom Scalable Service using Service Oriented Cloud Computing Ar 1 1,048 15-02-2017, 04:39 PM
Last Post: jaseela123d
  Exploring the design space of social network-based Sybil defenses 1 919 15-02-2017, 02:55 PM
Last Post: jaseela123d
  SUSPICIOUS EMAIL DETECTION seminar class 11 7,818 21-04-2016, 11:16 AM
Last Post: dhanabhagya
  DATA LEAKAGE DETECTION project topics 16 13,118 31-07-2015, 02:59 PM
Last Post: seminar report asees
  DYNAMIC SEARCH ALGORITHM IN UNSTRUCTURED PEER-TO-PEER NETWORKS--PARALLEL AND DISTRIBU electronics seminars 9 7,367 14-07-2015, 02:25 PM
Last Post: seminar report asees
  Revisiting Dynamic Query Protocols in Unstructured Peer-to-Peer Networks Projects9 2 1,326 14-07-2015, 02:11 PM
Last Post: seminar report asees
  An Acknowledgement-Based Approach for the Detection of routing misbehavior in MANETs mechanical engineering crazy 2 2,968 26-05-2015, 03:04 PM
Last Post: seminar report asees
  Design of Intranet Mail System nit_cal 14 11,446 19-05-2015, 11:17 AM
Last Post: seminar report asees
  An Acknowledgment-Based Approach For The Detection Of Routing Misbehavior In MANETs electronics seminars 7 4,712 27-01-2015, 12:09 AM
Last Post: Guest
  Design and Implementation of TARF: A Trust-Aware Routing Framework for WSNs Projects9 6 3,574 10-01-2015, 11:13 PM
Last Post: Guest

Forum Jump: