Energy dispatchcontrollersforaphotovoltaicsystem
#1

Energy dispatchcontrollersforaphotovoltaicsystem


a b s t r a c t
In thispapertwoenergydispatchcontrollersforuseinagrid-independentphotovoltaic(PV)systemare
presented.Thefirst,anoptimalenergydispatchcontroller,isbasedonaclassofAdaptiveCriticDesigns
(ACDs)calledActionDependentHeuristicDynamicProgramming(ADHDP).ThisclassofACDsusestwo
neuralnetworkstoevolveanoptimalcontrolstrategyovertime.Thefirstneuralnetworkor‘‘Action’’
networkdispensestheactualcontrolsignalswhilethesecondnetworkor‘‘Critic’’networkusesthese
controlsignalsalongwiththesystemstatestoprovidefeedbacktotheactionnetwork,measuring
performanceusingautilityfunction.Thisfeedbackloopallowstheactionnetworktoimprovebehavior
over time.Theoptimalenergydispatcherplacesemphasisonalwaysmeetingthecriticalload,followed
by keepingthechargeofthebatteryashighaspossiblesoastobeabletopowerthecriticalloadin
cases ofextendedlowoutputfromthePVarray,andlastlytopowerthenon-criticalloadinsofarasto
not interferewiththefirsttwoobjectives.Thesecondenergydispatchcontrollerisasmartenergy
dispatchcontrollerandisbuiltusingknowledgefromanexpert,codifiedintoaseriesofstaticrules.
This smartenergydispatchcontrolleriscalledthe‘‘PV-priority2’’controller.Theseenergydispatchers
are comparedwithastaticschemecalledthe‘‘PV-priority1’’.ThePV-priority1controllerrepresents
the standardcontrolstrategy.ResultsshowthattheADHDP-basedoptimalenergydispatcher(or
controller)outperformsthestandardPV-priority1energydispatcherinmeetingthestatedobjectives,
but trailsthePV-priority2energydispatcher.However,themajoradvantageoftheADHDPcontrolleris
that noexpertisrequiredfordesigningthecontroller,whereasforarule-basedcontrollersuchasthe
PV-priority2controller,anexpertisalwaysrequired.







1. Introduction
As thecostsoffossilfuelscontinuetorise,itisbecoming
economically importanttoinvestigateothersourcesofenergy.
Additionally, increasedcustomerdemandsandloadsarebegin-
ning tooutstripthegrid’scapacitytoservetheseloads.Assuch,
distributed generationofalternativeenergysourcesisbecominga
very heatedresearchanddevelopmentarea.
Currently, thereareseveralalternativeenergysourcesavail-
able: wind,solar,hydro-electricandgeo-thermal,tonameafew.
Hydro-electric andgeo-thermalplantsoftenrequirelargefoot
prints thatareatoddswithdevelopedareasandenvironmental
considerations. Windenergyiscurrentlyenjoyingveryenergetic
growth, ataround24%peryearsincetheyear2000intheUS(US
Department ofEnergy’sOfficeofEnergyEfficiencyAndRenewable
Energy, 2007). But,windpowerhasitsdownsidesaswellsince
not alllocationsreceiveenoughsustainedwindstobeproductive,
and eventhenproductionissometimessporadic.Ofallofthe
mentioned sources,solarpowerseemstobethemostpromising
in thatalllocationsonEarthreceivepredictablesunlighttosome
degree, andthesolararraysusedtoconvertsunlightinto
electricity (photovoltaicorPVarrays)scaleverywellfromvery
small sizesforcalculatorstoverylargesizesusedincentralized
power plants.
AnotherbenefitofsolarenergyisthatthePVarrayscontainno
movingpartsandcanlastseveraldecadesbeforeneedingtobe
replaced.Duringthistime,theonlymaintenancethatmayneedtobe
done toPVarraysisdustorsnowclearingandcheckingforalignment
problems.AndwhilethePVarraysarewithintheirratedlifetimes,
they generallyperformreliablywhiletheSunisshining.
Even withtheseadvantages,thereisonemajordrawbackofPV
systems thatlimitstheiradoptionrateandthatisthecostofthese
systems. Thecostofenergyderivedfromthesesystemsmakes
them notcurrentlycompetitivewithothersources.However,due
to technological,manufacturingandresourceimprovements,
these costshavesteadilyfalleninpreviousyears(Messenger
and Ventre,2004) andareexpectedtocontinuetodoso.Asthe
price falls,thissourcewillbemorecompetitive.Evenso,the
payback time(theamountoftimerequiredfortheinitial
investment inaPVsystemtoequalthecostsaccruedfrom
purchasing powerthroughthegrid)canbelengthy,andinsome
cases aslongas30yearsormore.
ARTICLEINPRESS
Contents listsavailableat ScienceDirect
journalhomepage: elsevierlocate/engappai
EngineeringApplicationsofArtificialIntelligence
0952-1976/$ -seefrontmatter & 2009 ElsevierLtd.Allrightsreserved.
doi:10.1016/j.engappai.2009.11.001
n Corresponding author.Tel.:+15733416641;fax:+15733414532.
E-mail address: gkumar[at]ieee.org (G.K.Venayagamoorthy).
Engineering ApplicationsofArtificialIntelligence23(2010)249–261
ARTICLEINPRESS
In ordertomakePVsystemscheaper(andshortenthepayback
period), optimalcontrolcanbeusedtomoreeffectivelyutilize
energy generatedbythePVarray,resultinginsmallerrequired
batteries andarrayswhilestillmaintainingthecriticalload.This
reduction insystemcomponentsizeleadstoadirectreductionin
cost fortheentiresystem.
The traditionalenergydispatcherforaPVsystemiscalledthe
‘‘PV-priority’’ (called‘‘PV-priority1’’inthispaper)controlscheme
(Henze andDodier,2003) andwillfirstattempttopowerallloads
using energyfromthePVarray;ifthereisnotenoughenergy
available fromthePVarraythenenergyfromthebatteryisused
to makeuptheshortfall(ifavailable),andifthereismoreenergy
available fromthePVarraythenthebatteriesarechargedwith
the difference(ifpossible).
In thispaper,twoadditionalcontrollersaredeveloped:the
‘‘PV-priority 2’’andanoptimalcontrollerbasedonaclassof
adaptive criticdesigns(ACDs)calledaction-dependentheuristic
dynamic programming,orADHDP(Werbos, 1992; Venayagamoorthy
etal.,2002; Prokhorov andWunsch,1997). The‘‘PV-
priority 2’’controlschemeissimilartothePV-priority1scheme
in thatitsperformanceisrulebased,butisdifferentinthatit
attempts toalwayspowerthecriticalloadfirst,thenchargethe
battery to70%,andfinallyusewhateverenergyisavailablefrom
the PVarrayandanythingover70%stateofchargeinthebattery
to powerthenon-criticalload.
The ADHDP-basedoptimalenergydispatcherontheother
hand isnotrulebased,anddevelopsitscontrolactionstrategyby
adapting itsperformanceinresponsetoameasuredmetricvalue.
Adaptive criticdesignsuseacombinationofdynamicprogram-
ming andreinforcementlearning,andtheADHDPmethodisthe
simplest oftheACDfamily(itusesonly2neuralnetworks).One
of theneuralnetworks(calledthe‘‘action’’networkor‘‘actor’’)is
responsible forprovidingthecontrolsignalswhilethesecond
(called the‘‘critic’’network)critiquesthesecontrolsignalsover
time. Theobjectivesofthisenergydispatcherarethefollowing:
i). Completelypowerthecriticalloadatalltimes.
ii). Maintainthebatterystateofchargeashighaspossiblesoas
to beabletomeetthecriticalloadduringtimesofreduced(or
non-existent) energyfromthePVarray.
iii). Powerthenon-criticalloadsuchthatthecontrollerisstill
able tomeetthefirsttwoobjectives.
Another advantageoftheADHDP-basedcontrolleristhatsince
it isnotrulebased,itsbehaviorcanbemodifiedovertimetocope
with changingmeteorologicalconditions.Onesuchimportant
condition isthebehavioroftheSunanditsassociatedoutput.
Even thoughtheoutputingeneralremainsrelativelyconstant,
there aresmalldeviationsandatleastsomeworkhasbeen
performed intopredictingsunspotactivity(Xie etal.,2006; Day
and Nandi,2008).
Other typesofcontrollershavealsobeenreportedaswell,such
as aQ-Learning-basedcontroller(Henze andDodier,2003) and
others usingfuzzylogic(Chuku etal.,2005).
Section 2presentsthegrid-independentPVsolarenergy
system studiedinthispaper.Section3describesthePV-priority
controllers. Section4describestheADHDPoptimalcontroller
design. Section5presentstheevaluationandcomparisonofthe
ADHDP optimalPVcontrollerandthePV-prioritycontrollers
performances onTypicalMeteorologicalYear2(TMY2)data
(National RenewableEnergyLaboratory,1995) ofsixcitiesinthe
United StatesofAmerica.Finally,theconclusionisgivenin
Section 6.
2. Grid-independentPVsolarenergysystem
The completephotovoltaicsystemmodeliscomposedofthe
PV array,maximumpowerpointtracker,controller,battery
charge controller,batteries,inverter,criticalloadsandnon-critical
loads. Thecriticalloadconsistsofloadsthatshouldnotbe
dropped (suchasrefrigeration,emergencyradiocommunication),
while thenon-criticalloadcontainsitemswhicharenon-essential
(television, etc.).
In ordertosimplifythesimulationandfocusonthecontroller
aspect ofthissystem,allofthesupportingsystemcomponents
(such astheinverter,maximumpowerpointtracker,wiring,etc.),
are assumedtooperateat100%efficiency.Intherealworld,
however, thesedevicesdonotoperateat100%efficiencybutnew
algorithms forthemaximumpowerpointtracker(Kim etal.,
2006; Kwon etal.,2006; Mutoh, etal.,2006; Park etal.,2006;
Xiao etal.,2006) aimtoincreasetheeffectiveefficiencyofthis
Critical Load
Constant 0.124 kW
Non-Critical Load
Variable 0 kW to 0.365 kW
Battery Storage
34.56 kWh
PV Array
Energy Dispatch Controller
ξ2ECB(t)
ENCL(t)
ECL(t)
LCL(t)
LNCL(t)
ξ1EP(t)
EB(t)
Fig. 1. Diagram ofthePVsystemmodel.
Nomenclature
EB(t) energystoredinthebatteryattime t
EB,max maximum energystoredinthebattery
EPV(t) energycollectedfromthePVarrayattime t
EPV,max maximum energyabletobecollectedfromthePV
array attestlocation
EPV,wasted energy collectedfromthePVarraythatisnotbeen
used attime t
LCL(t) currentcriticalloadattime t
LCL,max maximum criticalload
LNCL(t) currentnon-criticalloadattime t
LNCL,max maximum non-criticalload
ECB(t) energydispatchedtocharge(ordischarge)thebattery
at time t
ECL(t) energydispatchedtothecriticalloadattime t
ENCL(t) energydispatchedtothenon-criticalloadattime t
Mnon-zero multiplier (usedtoinsuredivisorisnon-zero;forthis
experiment, avalueof0.1isused)
x1 efficiency ofthephotovoltaicarraysystem
x2 efficiency ofthebattery
G. KumarVenayagamoorthy,R.L.Welch/EngineeringApplicationsofArtificialIntelligence23(2010)249–261 250
ARTICLEINPRESS
device. Likewise,newenergystoragesystems(Jiang andDougal,
2006; Lemofouet andRufer,2006) mayeclipsetheperformanceof
the standardlead-acid-typebatterytechnologyprimarilyused
today. Becausethefocusofthisstudyisprimarilytoevaluatethe
performance ofthepresentedcontrolstrategies,theassumption
of 100%efficiencyofthephotovoltaicsystemismade.Ifother
efficiencies aredesired,theycanbesetbymodifyingthe
appropriate valueswithinthemodels,asdepictedin Fig. 1.
Also, thePVarrayissimulatedtobetiltedsouthatanangle
equal tothelatitudeofeachtestcityandtheefficiencyofthePV
array modelistakenas11%toaccountforvariousnon-optimal
conditions (suchasarraymisalignment,dustonthearrays,etc.).
This valueisrepresentativeofthecurrentcommerciallyavailable
range ofefficienciesforPVarrays.Generally,PVpanelsvaryin
efficiency from6%toupto30%;althoughthehighefficiency
panels aregenerallyreservedforspacecraftusagebecauseoftheir
high radiationtolerancesandhigherpower-to-weightratio.A
rough equivalenttothePVarraysbeingsimulatedinthispaper
would beanarrayofeightKyoceraKC200GTpanels.Thesepanels
are over16%efficientandwilloutput200Wduringoptimal
conditions (Kyocera, 2007). Theminimumchargeforthebattery
of 30%isrequiredtosupplyenergytotheloads(thisisconsistent
with standarddeepcyclelead-acidbatteries).
Due toinsufficientPVenergyduringwintermonthsandnoPV
energy atnight,acontrolsystemisrequiredtodecidetheamount
of energytobedispatchedtothedifferentloads,includingthe
charging ofthebattery.Thecompletesysteminschematic
diagram formisshownbelowin Fig. 1 (energy flowdepictedby
arrows).
3. PV-prioritycontrollers
3.1. PV-priority1controller
The standardcontrollercalledthe‘‘PV-priority1’’controlleris
a verysimplecontrollerwhichalwaystriestomeettheloads(the
critical andthenthenon-critical)beforechargingthebattery.At
any onetime,ifthereisnotenoughenergyfromthePVarrayto
supply theloadsthenthebalanceisdrawnfromthebattery.If
instead thereisanexcess,thenwhateverisleftoverafter
supplying theloadsisdispatchedtothebattery.Inthisway,the
controller willattempttopowerallloadsandchargethebattery
as bestitcan,withoutanyconsiderationsgiventothetime-
varying statesofthesystem.Theflowchartforthedecisionsthat
this controllermakesinanygivenhourisgivenin Fig. 2.
Use EPV to power LCL
EPV(t)=EPV(t) -L CL(t) ; LCL(t)=0
Is EPV(t) > LCL(t)?
Yes No
Use EPV(t) to power LNCL(t)
EPV(t)=EPV(t) -L NCL(t) ; LNCL(t)=0
Is EPV(t) > LNCL(t)?
Yes
No
Is EPV(t) > (EB,max(t) - EB(t))?
Yes
No
START
Use EPV(t) to charge battery
EPV(t)=EPV(t)-(EB,max(t)-EB(t)) ;
ECB(t)=EB,max(t)-EB(t);
EB(t)=EB,max(t)
Use EB(t) to power
LCL(t)
EB(t)=EB(t) -L CL(t);
ECB(t)=ECB(t) -L CL(t) ;
LCL(t)=0
Use EPV to power as much of LCL as
possible
LCL(t)=LCL(t) -E PV(t) ; EPV(t)=0
Is EB(t) > LCL(t)?
Use EPV(t) to power as
much of LNCL(t) as
possible
LNCL(t)=LNCL(t) -E PV(t) ;
EPV(t)=0
Use EB(t) to
power as much
of LCL(t) as
possible
LCL(t)=LCL(t) –
EB(t) ; ECB(t)=
ECB(t) -E B(t) ;
EB(t)=0
Is EB(t) > LNCL(t)?
Use EB(t) to power
LNCL(t)
EB(t)=EB(t) -L NCL(t) ;
ECB(t)=ECB(t) -L NCL(t) ;
LNCL(t)=0
Yes
Use EB(t) to
power as much of
LNCL(t) as
possible
LNCL(t)=LNCL(t) –
EB(t) ; ECB(t)=
ECB(t) -E B(t) ;
EB(t)=0
Use EPV(t) to charge battery as much
as possible
ECB(t)=ECB(t) + EPV(t);
EB(t)=EB(t)+ E PV(t) ; EPV(t)=0
No
END
Fig. 2. Flowchart forPV-priority1Controller.
G. KumarVenayagamoorthy,R.L.Welch/EngineeringApplicationsofArtificialIntelligence23(2010)249–261 251
ARTICLEINPRESS
This controllerworkswellwhenthereissufficientPVenergy.
However, whenthereisnotsufficientPVenergy,thenthebattery
will notbefullyrechargedandtheloadswillbedropped.The
weather anduserloadsarestochasticinnature;thereforethereis
no onedefinitivemodelatalltimes.Thus,itmakessensetolook
at intelligentmodel-freelearningmethodsofcontrollingsucha
system.
3.2. PV-priority2controller
The secondPV-prioritycontrollerthatisusedinthispaperis
the PV-priority2controller.Asmentionedpreviously,this
controller firstmeetsthecriticalloadthenattemptstocharge
the batteryto70%stateofcharge.Oncethesetwoobjectiveshave
been met,thecontrollerthenattemptstopowerthenon-critical
load usinganyexcessPVenergyorenergyfromthebattery
without depletingitbelow70%stateofcharge,asdetailedin
Fig. 3.
4. ADHDPoptimalcontroller
As previouslymentioned,becauseuserloadsandsolar
insolation arestochasticinnature,itmakessensetolookat
intelligent model-freemethodsofcontrol.Onesuchintelligent
system caninvolvetheuseofadaptivecriticdesigns.ACDsutilize
neural networksandarecapableofoptimizationovertimein
conditions ofnoiseanduncertainty.AfamilyofACDswas
proposed by Werbos (1992) as anewoptimizationtechnique
combining theconceptsofapproximatedynamicprogramming
and reinforcementlearning.WithACDs,foragivenseriesof
control actionsthatmustbetakensequentially(andnotknowing
Use EPV(t) to power L CL (t)
EPV(t)=EPV(t) -L CL(t)
Is EPV(t) > LCL(t)?
Use EPV(t) and EB(t) to power LCL(t)
EB(t)=EB(t) -(L CL(t) -E PV(t)) ;
EPV(t) =0
Yes No
Use EPV to charge battery to 70%
EPV(t)=EPV(t) -(0.7-SOC(t)) ; EB(t)=EB(t)
+(0.7-SOC(t))
Is EPV(t) > (0.7-SOC(t))?
Use EPV to charge battery
EB(t)=EB(t) + EPV(t) ; EPV(t)=0
Yes No
Use any excess EPV(t) to charge battery
Is EB(t)-((LCL(t) + LNCL(t))*anticipated time
until non-zero EPV(t))>70%?
Yes No
Use EPV (t) to power some L NCL(t)
LNCL(t)=LNCL(t) -E PV(t) ; EPV(t)=0;
Use EPV(t) to power LNCL(t)
EPV(t)=EPV(t) -L NCL(t) ; LNCL(t)=0
Is EPV(t) > LNCL(t)?
o N s eY
Use available EB(t) to power remaining LNCL(t), if
possible
EB(t)=EB(t) –L NCL(t);
ECB(t)= ECB(t) –L NCL(t) ; LNCL(t)=0
START
END
to power LCL to power some LNCL(Fig. 3. Flowchart forPV-priority2Controller.
G. KumarVenayagamoorthy,R.L.Welch/EngineeringApplicationsofArtificialIntelligence23(2010)249–261 252
ARTICLEINPRESS
the effectoftheseactionsuntiltheendofthesequence),itis
possible todesignanoptimalcontrollerusingthetraditional
supervised learning-basedneuralnetwork.
The adaptivecriticmethoddeterminesanoptimalcontrolfora
system byadaptingtwoneuralnetworks:an Action network anda
Critic network. TheActionnetworkisresponsiblefordrivingthe
system tothedesiredstates,whiletheCriticnetworkis
responsible forprovidingtheActionnetworkwithperformance
feedback withrespecttoreachingthedesiredstatesovertime.
With thisfeedback,theActionnetworkisabletoadaptits
parameters continuouslytomaximizeitsobjective.TheCritic
network learnstooptimizetheActionnetworkbyapproximating
the Hamilton–Jacobi–Bellmanequationassociatedwithoptimal
control theory.
This Actor–Criticadaptationprocessstartswithanon-optimal
or suboptimalpolicybytheactionnetwork;theCriticnetwork
then guidestheActionnetworktowardanoptimalsolutionat
each successiveadaptation.Duringtheadaptations,neitherofthe
networks needsany‘‘information’’ofanoptimaltrajectory,only
the desiredcostneedstobeknown.Furthermore,thismethod
determines optimalcontrolpolicyfortheentirerangeofinitial
conditions. Additionally,itneedsnoexternaltraining,unlike
other neural-controllers(Venayagamoorthy etal.,2002).
The designladderofACDsincludesthreebasicimplementa-
tions: HeuristicDynamicProgramming(HDP),DualHeuristic
Programming (DHP)andGlobalizedDualHeuristicProgramming
(GDHP), intheorderofincreasingpowerandcomplexity.The
interrelationships betweenmembersoftheACDfamilyhavebeen
generalized andexplainedin(Prokhorov andWunsch,1997). In
this paper,anAction-dependentHDP(ADHDP)approachis
adopted forthedesignofanoptimalPVcontroller.Action-
dependent adaptivecriticdesignsdonotneedsystemmodelsto
develop theoptimalcontrolpolicy(actionnetworkoutput).
As mentioned,theobjectiveoftheoptimalPVcontrolis
threefold –tomaximizeorfullydispatchtherequiredenergyto
the criticalloadsatalltimes,dispatchenergytochargethe
battery whenevernecessarysoastodispatchenergytothecritical
loads intheabsenceofenergyfromthecollectorandthelast
objective istodispatchenergytothenon-criticalloadsnot
comprising onthefirsttwoobjectives.Theoptimalcontrolleris
not usedforinstanceswherethereissufficientsolarenergyto
power allloadsaswellascompletelychargethebattery.When
this occurs,allloadsaresatisfiedandthebatteryiscompletely
charged.
This optimalcontrollerusestwonetworks(theActionand
Critic networks)aspreviouslymentioned.Theinputstothe
Action networkcorrespondtothestatesofthesystemwhilethe
outputs correspondtotheamountofenergytobedispatchedto
the criticalloads,batteryandnon-criticalloads.Theinputstothe
Critic consistoftheinputstotheActionnetworkattime t, t1
and t2, aswellastheoutputsoftheActionnetworkattime t,
t1 and t2. TheCriticthenusestheinformationfromthe
current statesandactionsinthecurrenttimestep(aswellasfrom
the recentpast)toderivetheActionnetworkovertimetoevolve
an optimalcontrolpolicy. Fig. 4 shows theconnectionbetween
the Actionnetwork,CriticnetworkandthePVsystem.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: who is denise welch married, welch allyn, energy dispatchcontrollersforaphotovoltaicsystem, onetime,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  Adaptive Data Fusion for Energy Efficient Routing in Wireless Sensor Networksy seminar addict 1 1,517 25-08-2014, 05:40 PM
Last Post: Guest
  GREEN ENERGY HARVESTING TECHNOLOGY IN 3D IC seminar paper 1 1,878 01-12-2012, 02:00 PM
Last Post: seminar details
  NON-CONVENTIONAL ENERGY RESOURCES project report helper 3 4,208 21-11-2012, 12:39 PM
Last Post: seminar details
  RENEWABLE ENERGY RESOURCES seminar details 1 3,106 19-11-2012, 02:17 PM
Last Post: seminar details
  Smart Grid and Integration of renewable energy resources seminar paper 1 1,709 19-11-2012, 02:17 PM
Last Post: seminar details
  APPLICATION OF NON-CONVENTIONAL & RENEWABLE ENERGY SOURCES seminar addict 1 2,018 29-10-2012, 01:37 PM
Last Post: seminar details
  WIRELESS BATTERY CHARGING SYSTEM USING RADIO FREQUENCY ENERGY HARVESTING full report seminar details 0 1,075 11-06-2012, 05:38 PM
Last Post: seminar details
  Thermal Energy seminar details 0 895 09-06-2012, 05:24 PM
Last Post: seminar details
  Residential Piezoelectric Energy Sources details seminar addict 2 1,562 09-06-2012, 05:05 PM
Last Post: seminar details
  Energy Resources seminar details 0 842 07-06-2012, 01:31 PM
Last Post: seminar details

Forum Jump: