Multiterabit Networks
#1

Definition
The explosive demand for bandwidth for data networking applications continues to drive photonics technology toward ever increasing capacity in the backbone fiber network and toward flexible optical networking. Already commercial Tb/s (per fiber) transmission systems have been announced, and it can be expected that in the next several years, we will begin to be limited by the 50 THz transmission bandwidth of silca optical fiber. Efficient bandwidth utilization will be one of the challenges of photonics research. Since the communication will be dominated by data, we can expect the network of the future to consist of multiterabit packet switches to aggregate traffic at the edge of the network and cross connects with wavelength granularity and tens of terabits throughout the core.

The infrastructure required to govern Internet traffic volume, which doubles every six months, consists of two complementary elements: fast point-to-point links and high-capacity switches and routers. Dense wavelength division multiplexing (DWDM) technology, which permits transmission of several wave-lengths over the same optical media, will enable optical point-to-point links to achieve an estimated 10 terabits per second by 2008. However, the rapid growth of Internet traffic coupled with the avail-ability of fast optical links threatens to cause a bottleneck at the switches and routers.

Multiterabit packet-switched networks will require high-performance scheduling algorithms and architectures. With port densities and data rates growing at an unprecedented rate, future prioritized scheduling schemes will be necessary to pragmatically scale toward multiterabit capacities. Further, support of strict QoS requirements for the diverse traffic loads characterizing emerging multimedia Internet traffic will increase. Continuous improvements in VLSI and optical technologies will stimulate innovative solutions to the intricate packet-scheduling task.

Multiterabit packet switched networks will require high performance scheduling algorithms and architectures. With port densities and data rates growing at an unprecedented rate, future prioritized scheduling schemes will be necessary to pragmatically scale toward multiterabit capacities. Advanced scheduling schemes exploit concurrency and distributed computation to offer a faster, more efficient decision process. Further, support of strict QoS requirements for the diverse traffic loads characterizing emerging multimedia Internet traffic will increase. Continuous improvements in VLSI and optical technologies will stimulate innovative solutions to the intricate packet-scheduling task.



Routing Principles
The principal criterion of successful routing is, of course, correctness, but it is not the only criterion. You might prefer to take the most direct route (the one that takes the least time and uses the least fuel), the most reliable route (the one that is not likely to be closed by a heavy snowfall), the most scenic route (the one that follows pleasant country roads rather than busy highways), the least expensive route (the one that follows freeways rather than toll roads), or the safest route (the one that avoids the army's missile testing
range). In its most general form, optimal routing involves forwarding a packet from source to destination using the "best" path.
Reply
#2
The explosive demand for bandwidth for data networking applications continues to drive photonics technology toward ever increasing capacity in the backbone fiber network and toward flexible optical networking. Already commercial Tb/s (per fiber) transmission systems have been announced, and it can be expected that in the next several years, we will begin to be limited by the 50 THz transmission bandwidth of silca optical fiber. Efficient bandwidth utilization will be one of the challenges of photonics research. Since the communication will be dominated by data, we can expect the network of the future to consist of multiterabit packet switches to aggregate traffic at the edge of the network and cross connects with wavelength granularity and tens of terabits throughout the core.
The infrastructure required to govern Internet traffic volume, which doubles every six months, consists of two complementary elements: fast point-to-point links and high-capacity switches and routers. Dense wavelength division multiplexing (DWDM) technology, which permits transmission of several wave-lengths over the same optical media, will enable optical point-to-point links to achieve an estimated 10 terabits per second by 2008. However, the rapid growth of Internet traffic coupled with the avail-ability of fast optical links threatens to cause a bottleneck at the switches and routers.
Multiterabit packet-switched networks will require high-performance scheduling algorithms and architectures. With port densities and data rates growing at an unprecedented rate, future prioritized scheduling schemes will be necessary to pragmatically scale toward multiterabit capacities. Further, support of strict QoS requirements for the diverse traffic loads characterizing emerging multimedia Internet traffic will increase. Continuous improvements in VLSI and optical technologies will stimulate innovative solutions to the intricate packet-scheduling task.
Reply
#3
friends if u have pls snd multiterabit network
Reply
#4

hi
to get information about the topic Multiterabit networks full report ,ppt and related topic refer the page link bellow

http://studentbank.in/report-multiterabit-networks

http://studentbank.in/report-multiterabit-networks-d

http://studentbank.in/report-multiterabi...orks--3464
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: report multiterabit networks, what is multiterabit, multiterabit, multiterabit network seminar report ppt, multiterabit networks pdf, 2011 ieee seminar topic on multiterabit network abstract, ppt for it in multiterabit networks,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  computer networks full report seminar topics 8 42,026 06-10-2018, 12:35 PM
Last Post: jntuworldforum
  Vertical Handoff Decision Algorithm Providing Optimized Performance in Heterogeneous Wireless Networks computer science topics 2 30,179 07-10-2016, 09:02 AM
Last Post: ijasti
  Dynamic Search Algorithm in Unstructured Peer-to-Peer Networks seminar surveyer 3 2,816 14-07-2015, 02:24 PM
Last Post: seminar report asees
  Heterogeneous Wireless Sensor Networks in a Tele-monitoring System for Homecare electronics seminars 2 2,546 26-02-2015, 08:03 PM
Last Post: Guest
  Shallow Water Acoustic Networks (SWANs project report helper 2 1,852 24-03-2014, 10:10 PM
Last Post: seminar report asees
  Bluetooth Based Smart Sensor Networks (Download Full Seminar Report) Computer Science Clay 75 53,821 16-02-2013, 10:16 AM
Last Post: seminar details
  FACE RECOGNITION USING NEURAL NETWORKS (Download Seminar Report) Computer Science Clay 70 31,771 01-02-2013, 09:28 PM
Last Post: Guest
  Ethernet Passive Optical Networks computer science crazy 1 2,759 12-01-2013, 12:00 PM
Last Post: seminar details
  SEMINAR REPORT on Adaptive Routing in Adhoc Networks Computer Science Clay 2 4,928 02-01-2013, 10:25 AM
Last Post: seminar details
  AN EXTENDED ZONE ROUTING PROTOCOL FOR SERVICE DISCOVERY IN MOBILE AD HOC NETWORKS seminar presentation 1 9,306 24-12-2012, 12:47 PM
Last Post: seminar details

Forum Jump: