Millipede Data Storage full report
#1

[attachment=1861]


ABSTRACT
Given the rapidly increasing data volumes that are downloaded onto mobile devices such as cell phones and PDAs, there is a growing demand for suitable storage media with more and more capacity. At CeBIT, IBM for the first time shows the prototype of the MEMS- Micro Electrical Mechanical System- assembly of a nanomechanical storage system known internally as the "millipede" project. Using revolutionary nanotechnology, scientists at the IBM Zurich Research Laboratory, Switzerland, have made it to the millionths of a millimetre range, achieving data storage densities of more than one terabit (1000 gigabit) per square inch, equivalent to storing the content of 25 DVDs on an area the size of a postage stamp. With this new technique, 3040-nm-sized bit indentations of similar pitch size have been made by a single cantileverltip in a thin (50-nm) polymethylmethacrylate (PMMA) layer, resulting in a data storage density of 400500 ~ b l i n .T*h e Millipede project could bring tremendous data capacity to mobile devices such as personal digital assistants, cellular phones, and multifunctional watches, can be used to explore a variety of other applications, such as large-area microscopic imaging, nanoscale lithography or atomic and molecular manipulation.

I. INTRODUCTION
When we think of data storage, it's common to imagine hard drive platters or solid-state memory chips. But beyond magnetic fields or electrical charges, a surprising amount of digital information is also stored in a physical form; punched paper tape and punched cards are very early examples, but our very latest CD and DVD media represent data as a series of "pits and lands" delivered to a physical surface. When IBM launched the Millipede project in 1996, it heralded another data storage effort designed to record data through microscopic physical techniques, promising very high storage densities in a In actual practice the Millipede's thousands of microscopic tips write tiny pits to a thin film of special polymer. The sequence of pits corresponds to bits. Unlike punched cards or tape, however, the data can be erased and rewritten. The high storage density of more than a terabit was achieved by using individual silicon tips to create pits approximately 10 nanometers in diameter, i.e. 50,000 times smaller than the period at the end of this sentence. Experimental chips have been designed comprising more than 4,000 of these tips arrayed in a small 6.4 mm x 6.4 mm2. These dimensions make it possible to pack an entire high-capacity storage system into the SD flash memory format package. The project is still in an advanced research state. After a decision has been made, it will take another two to three years of development until the product would be available on the market. Moreover, the nanomechanical data medium has been optimized to use a minimum amount of energy. Thus, it is ideally suited for use in mobile devices such as digital cameras, cell phones and USB sticks. However, it is likely that IBM's these criteria, mobile storage (for example, for cell phones, USB sticks, and digital cameras) is ideally suited for the Millipede probe storage technology. In this segment Millipede is able to compete against flash, which is very costly at capacities between 5GB and 40GB. Millipede's inherent shock resistance and low power requirements also bolster these features.
MOTIVATION & OBJECTIVES
In the 21st century, the nanometer will very likely play a role similar to the one played by the micrometer in the 20th century. The nanometer scale will presumably pervade the field of data storage. In magnetic storage today, there is no clear-cut way to achieve the nanometer scale in all three dimensions. Within a few years, however, magnetic storage technology will arrive at a stage of its exciting and successful evolution at which fundamental changes are likely to occur when current storage technology hits the well-known super paramagnetic limit. Several ideas have been proposed on how to overcome this limit. One such proposal involves the use of patterned magnetic media, for which the ideal writelread concept must still be demonstrated, but the biggest challenge remains the patterning of the magnetic disk in a cost-effective way. Other proposals call for totally different media and techniques such as local probes or holographic methods. In general, if an existing technology reaches its limits in the course of its evolution and new alternatives are emerging in parallel, two things usually happen: First, the existing and well-established technology will-be explored further and everything possible done to push its limits to take maximum advantage of the considerable investments made. Then, when the possibilities for improvements have been exhausted, the technology may still survive for certain niche applications, but the emerging technology will take over, opening up new perspectives and new directions.Today we are witnessing in many fields the transition from structures of the micrometer scale to those of the nanometer scale, a dimension at which nature has long been building the finest devices with a high degree of local functionality. Many of the I It techniques we use today are not suitable for the coming nanometer age. In any case, an A emerging technology being considered as a serious candidate to replace an existing but limited technology must offer long-term perspectives. The only available tool known today that is simple and yet provides these very longterm perspectives is a nanometer sharp tip. Such tips are now used in every atomic force microscope (AFM) and scanning tunneling microscope (STM) for imaging and structuring down to the atomic scale. In the early 1990s, Mamin and Rugar at the IBM Almaden Research Center pioneered the possibility of using an AFM tip for readback and writing of topographic features for the purposes of data storage. In one scheme developed by them, reading and writing were demonstrated with a single AFM tip in contact with a rotating polycarbonate substrate. The data were written thermomechanically via heating of the tip. In this way, densities of up to 30 ~ b / i nw.e~re achieved. The objectives of the research activities within the Micro- and Nanomechanics Project at the IBM Zurich Research Laboratory are to explore highly parallel AFM data storage with areal storage densities far beyond the expected super paramagnetic limit (60100 ~ b l i n .a~n)d data rates comparable to those of today's magnetic recording. The "Millipede" concept is a new approach for storing data at high speed and with an ultrahigh density. It is not a modification of an existing storage technology, although the use of magnetic materials as storage media is not excluded. The ultimate locality is given by a tip, and high data rates are a result of massive parallel operation of such tips. The current effort is focused on demonstrating the Millipede concept with areal densities up to 500 Gblin.* and parallel operation of very large 2D (32 x 32) AFM cantilever arrays with integrated tips and writelread storage functionality. The AFM-based data storage concept, Millipede has a potentially ultrahigh density, terabit capacity, small form factor, and high data rate. Its potential for ultrahigh storage density has been demonstrated by a new thermo mechanical local-probe technique to store and read back data in very thin polymer films. With this new technique, cantileverltip in a thin (50-nm) polymethylmethacrylate (PMMA) layer, resulting in a data storage density of 400500 ~ b l i nH. i~gh data rates are achieved by parallel operation of large two-dimensional (2D) AFM arrays that have been batch-fabricated by silicon surface-micromachining techniques. The very large scale integration (VLSI) of microlnanomechanical devices (cantileversltips) on a single chip leads to the largest and densest 2D array of 32 x 32 (1024) AFM cantilevers with integrated writelread storage functionality ever built. Time-multiplexed electronics control the writelread storage cycles for parallel operation of the Millipede array chip. Initial areal densities of 100200 ~ b l i n . ~ have been achieved with the 32 x 32 array chip, which has potential for further improvements. In addition to data storage in polymers or other media, and not excluding magnetics, we envision areas in nanoscale science and technology such as lithography, high-speedllarge-scale imaging, molecular and atomic manipulation.
3.MILLIPEDE CONCEPT
3.1. Technological Background
The 2D AFM cantilever array storage technique called "Millipede" is illustrated in figure. It is based on a mechanical parallel x/y scanning of either the entire cantilever array chip or the storage medium. In addition, a feedback-controlled z-approaching and - leveling scheme brings the entire cantilever array chip into contact with the storage medium. This tipmedium contact is maintained and controlled while x/y scanning is performed for writelread. It is important to note that the Millipede approach is not based on individual z-feedback for each cantilever; rather, it uses a feedback control for the entire chip, which greatly simplifies the system. However, this requires stringent control and uniformity of tip height and cantilever bending. Chip approach and leveling make use of four integrated approaching cantilever sensors in the corners of the array chip to control the approach of the chip to the storage medium. Signals from three sensors provide feedback signals to adjust three magnetic z-actuators until the three approaching sensors are in contact with the medium. The three sensors with the individual feedback loop maintain the chip leveled and in contact with the surface while x/y scanning is performed for writelread operations. This basic concept of the entire chip approachlleveling has been tested and demonstrated for the first time by parallel imaging with a 5 x 5 array chip. These parallel imaging results have shown that all 25 cantilever tips have approached the substrate within less than 1 pm of z-activation. This promising result has led us to believe that chips with a tip-apex height control of less than 500 nm are feasible. This stringent requirement for tip-apex uniformity over the entire chip is a consequence of the uniform force needed During the storage operation, the chip is raster-scanned over an area called the storage field by a magnetic x/y scanner. The scanning distance is equivalent to the cantilever x/y pitch, which is currently 92 pm. Each cantileverltip of the array writes and reads data only in its own storage field. This eliminates the need for lateral positioning adjustments of the tip to offset lateral position tolerances in tip fabrication. Consequently, a 32 x 32 array chip will generate 32 x 32 (1 024) storage fields on an area of less than 3 mm x 3 mm. Assuming an areal density of 500 ~ b l i n .o~n,e storage field of 92 pm x 92 pm has a capacity of about 10 Mb, and the entire 32 x 32 array with 1024 storage fields has a capacity of about 10 Gb on 3 mm x 3 mm. As the storage capacity scales with the number of elements in the array, cantilever pitch (storage-field size) and areal density, and depends on the application requirements. Lateral tracking will also be performed for the entire chip, with integrated tracking sensors at the chip periphery. This assumes and requires very good temperature control of the array chip and the medium substrate between write and read cycles. For this reason the array chip and medium substrate should be held within about 1 "C operating temperature for bit sizes of 30 to 40 nm and array chip sizes of a few millimeters. This will be achieved by using the same material (silicon) for both the array chip and the medium substrate in conjunction with four integrated heat sensors that control four heaters on the chip to maintain a constant array-chip temperature during operation. True parallel operation of large 2D arrays results in very large chip sizes because of the space required for the individual writelread wiring to each cantilever and the many 110 pads. The row and column time-multiplexing addressing scheme implemented successfully in every DRAM is a very elegant solution to this issue. In the case of Millipede, the time-multiplexed addressing scheme is used to address the array row by row with full parallel writelread operation within one row. Temperature plays a critical role in every part of the device's operation once the tips contact the polymer surface. Bits are written by heating the tip to a temperature above the glass transition temperature of the polymer by means of the heating resistor integrated in the cantilever. The polymer in close proximity to the tip is heated and becomes softer allowing the tip to indent a few nanometers into the film, mechanically stressing the material. For reading the cantilever's reading sensor, which is separate from the tip, is heated slightly. As the polymer film is scanned under the tip, the tip moves in and out of the written indentations. When the tip moves into an indent, it cools down because of the reduced distance to the substrate. This cooling results in a measurable change in electrical conductivity of the sensor. To ovetwrite data, thermo-mechanical effects are used. They cause the stressed polymer material closely around a newly created bit to relax. The current Millipede storage approach is based on a new thermomechanical writehead process in nanometer-thick polymer films. Thermomechanical writing in polycarbonate films and optical readback were first investigated and demonstrated with a single cantilever by Mamin and Rugar. Although the storage density of 30 ~ b l i n . ~ obtained original& was not overwhelming, the results encouraged to use polymer films as well to achieve density improvements.
Thermomechanical AFM data storage
Thermomechanical writing is a combination of applying a local force by the cantileverltip to the polymer layer and softening it by local heating. Initially, the heat transfer from the tip to the polymer through the small contact area is very poor, improving as the contact area increases. This means that the tip must be heated to a relatively high temperature (about 400°C) to initiate the melting process. Once melting has commenced, the tip is pressed into the polymer, which increases the heat transfer to the polymer, increases the volume of melted polymer, and hence increases the bit size. It is estimated that at the beginning of the writing process only about 0.2% of the heating power is used in the very small contact zone (1040 nm2) to melt the polymer locally, whereas about 80% is lost through the cantilever legs to the chip body and about 20% is radiated from the heater platform through the air gap to the medium/substrate. After melting has started and the contact area has increased, the heating power available for generating the indentations increases by at least ten times to become 2% or more of the total heating power. With this highly nonlinear heat-transfer mechanism, it is very difficult to achieve small tip penetration and thus small bit sizes, as well as to control and reproduce the thermomechanical writing process. This situation can be improved if the thermal conductivity of the substrate is increased, and if the depth of tip penetration is limited. They have explored the use of very thin polymer layers deposited on Si substrates to improve these characteristics. The hard Si substrate prevents the tip from penetrating farther than the film thickness allows, and it enables more rapid transport of heat away from the heated region because Si is a much better conductor of heat than the polymer. Si substrates are coated with a 40-nm film of polymethylmethacrylate (PMMA) to achieve bit sizes ranging between 10 and 50 nm. However there is increased tip wear, probably caused by the contact between Si tip and Si substrate during writing. So introduced a 70-nm layer ofcross-linked photoresist (SU-8) between the Si substrate and the PMMA film to act as a softer penetration stop that avoids tip wear but remains thermally stable. Using this layered storage medium, data bits 40 nm in diameter have been written. These results were obtained using a I-pm-thick, 70-pm-long, two-legged Si cantilever. The cantilever legs are made highly conducting by high-dose ion implantation, whereas the heater region remains low-doped. Electrical pulses 2 ps in duration were applied to the cantilever with a period of 50 ps Imaging and reading are done using a new thermomechanical sensing concept. The heater cantilever originally used only for writing was given the additional function of a thermal readback sensor by exploiting its temperature-dependent resistance. The resistance ® increases nonlinearly with heating powerltemperature from room temperature to a peak value of 500700°C.For sensing, the resistor is operated at about 350°C, a temperature that is not high enough to soften the polymer, as is necessary for writing.. When the distance between heater and sample is reduced as the tip moves into a bit indentation, the heat transport through air will be more efficient, and the heater's temperature and hence its resistance will decrease. Thus, changes in temperature of the continuously heated resistor are monitored while the cantilever is scanned over data bits, providing a means of detecting the bits.
3.3. Array design, technology, and fabrication
As a first step, a 5 x 5 array chip was designed and fabricated to test the basic Millipede concept. All 25 cantilevers had integrated tip heating for thermomechanical writing and piezoresistive deflection sensing for read-back. No timemultiplexing addressing scheme was used for this test vehicle; rather, each cantilever was individually addressable for both thermomechanical writing and piezoresistive deflection sensing. A complete resistive bridge for integrated detection has also been incorporated for each cantilever. The array of tiny levers at the heart of the M~ll~pedsyes tem The chip has been used to demonstrate x/y/z scanning and approaching of the entire array, as well as parallel operation for imaging. This was the first parallel imaging by a 2D AFM array chip with integrated piezoresistive deflection sensing. The imaging results also confirmed the global chip-approaching and -leveling scheme, since all 25 tips approached the medium within less than 1 pm of z-actuation. Unfortunately, the chip was not able to demonstrate parallel writing because of electro migration problems due to temperature and current density in the Al wiring of the heater. However, the results got from 5 x 5 test vehicle are I)gl obal chip approaching and leveling is possible and promising, and 2) metal (Al) wiring on the cantilevers should be avoided to eliminate electromigration and cantilever deflection due to bimorph effects while heating. With the findings from the fabrication and operation of the 5 x 5 array and the very dense thermomechanical writinglreading in thin polymers with single cantilevers, they made some important changes in the chip functionality and fabrication processes. The major differences are 1) surface micromachining to form cantilevers at the wafer surface, 2) all-silicon cantilevers, 3) thermal instead of piezoresistive sensing, and 4) first- and second-level wiring with an insulating layer for a multiplexed row/columnaddressing scheme. Since the heater platform functions as a writelread element and no individual cantilever actuation is required, the basic array cantilever cell becomes a simple twoterminal device addressed by multiplexed x/y wiring. The cell area and x/y cantilever pitch is 92 pm x 92 pm, which results in a total array size of less than 3 mm x 3 mm for the 1024 cantilevers. The cantilever is fabricated entirely of silicon for good thermal and mechanical stability. It consists of the heater platform with the tip on top, the legs acting as a soft mechanical spring, and an electrical connection to the heater. They are highly doped to minimize interconnection resistance and replace the metal wiring on the cantilever to eliminate electromigration and parasitic z-actuation of the cantilever due to the bimorph effect. The resistive ratio between the heater and the silicon interconnection sections should be as high as possible; currently the highly doped interconnections are 400 aand the heater platform is 11 krm. (at 4 V reading bias). The cantilever mass must be minimized to obtain soft (flexible), high-resonantfrequency cantilevers. Soft cantilevers are required for a low loading force in order to eliminate or reduce tip and medium wear, whereas a high resonant frequency allows high-speed scanning. In addition, sufficiently wide cantilever legs are required for a small thermal time constant, which is partly determined by cooling via the cantilever legs. These design considerations led to an array cantilever with 50-pm-long, 10-pm-wide, 0.5-pmthick legs, and a 5-pm-wide, 10-pm-long, 0.5-pm-thick platform. Such a cantilever has a stiffness of 1 Nlm and a resonant frequency of 200 kHz. The heater time constant is a few i microseconds, which should allow a multiplexing rate of 100 kHz. This contradicts the requirement of a large gap between the chip surface and the storage medium to ensure that only the tips, and not the chip surface, are making contact with the medium. Instead of making the tips longer, bent the cantilevers a few micrometers out of the chip plane by depositing a stress-controlled plasma-enhanced chemical vapor deposition (PECVD) silicon-nitride layer at the base of the cantilever. Close-up of a lever's tiny tip Cantilevers are released from the crystalline Si substrate by surface micromachining using either plasma or wet chemical etching to form a cavity underneath the cantilever. Compared to a bulk-micromachined through-wafer cantilever-release process, as performed for 5 x 5 array, the surface-micromachining technique allows an even higher array density and yields better mechanical chip stability and heat sinking. Because the Millipede tracks the entire array without individual lateral cantilever positioning, thermal expansion of the array chip must be either small or well-controlled. Because of thermal chip expansion, the lateral tip position must be controlled with better precision than the bit size, which requires array dimensions as small as possible and a well-controlled chip temperature.
Reply
#2
[attachment=3286]

Seminar On:- Millipede memory

Presented By:-
PALLAVI GHODKE
T.E.COMP
Roll No::18

Content
Millipede memory Introduction.
The Millipede concept.
Reading and Writing data.
Stored bits.
Cantilever Structure.
Current state of the art
Modern disk Storage
Conclusion



What is millipede ?

Millipede is a non-volatile computer memory stored on nanoscopic pits burned into the surface of a thin polymer layer, read and written by a MEMS-based probe.
Millipede storage technology is being pursued as a potential replacement for magnetic recording in hard drives.
At launch, it would probably be more expensive per-megabyte than prevailing technologies, but this disadvantage is hoped to be offset by the sheer storage capacity that Millipede technology would offer.



History¦

Using an innovative nanotechnology, scientists have demonstrated a data storage density of a trillion bits per square inch “ (20 times higher)
Rather than using traditional magnetic or electronic means to store data, Millipede uses thousands of nano-sharp tips to punch indentations representing individual bits into a thin plastic film.

The 'Millipede' technology is re-writeable (meaning it can be used over and over again), and may be able to store more than 3 billion bits of data in the space occupied by just one hole in a standard punch card.
Millipede Storage Chips
MEMS Based Device
Bitwise Data Storage


Need of Millipede ?

Flash memory is not expected to surpass 1-2 gigabytes of capacity in the near term, Millipede technology could pack 10 - 15 gigabytes of data into the same tiny format, without requiring more power for device operation.
"The Millipede project could bring tremendous data capacity to mobile devices such as personal digital assistants, cellular phones, and multifunctional watches,

Using revolutionary nanotechnology, scientists have made it to the millionths of a millimeter range, achieving data storage densities of more than one terabit (1000 gigabit) per square inch, equivalent to storing the content of 25 DVDs on an area the size of a postage stamp.


The Millipede concept

The main memory of modern computers is constructed from number of DRAM-related devices. DRAM basically consists of a series of capacitors, which store data as the presence or absence of electrical charge. Each capacitor and its associated control circuitry, referred to as a cell, holds one bit, and bits can be read or written in large blocks at the same time.
Hard drives store data on a metal disk that is covered with a magnetic material; data is represented as local magnetization of this material.
Millipede storage attempts to combine the best features of both. Like the hard drive, millipede stores data in a "dumb" medium that is simpler and smaller than any cell used in an electronic medium.



What is a Cantilever ?

The core components of probe storage system are a two-dimensional array of silicon probes (cantilevers) and a micro-mechanical scanner which moves the storage medium relative to the array.
For the device to perform its reading, writing and erasing functions, the cantilever tips are brought into contact with the storage medium ” a thin film of a custom designed cross-linked polymer coated on a silicon substrate, which is moved in the x- and y-directions. The storage medium is positioned with nanometer-scale accuracy relative to the cantilever array.
About used Cantilevers

The cantilevers used in the array are of a three-terminal design, with separate heaters for reading and writing, and a capacitive platform for electrostatic actuation of the cantilevers in the z-direction.
The cantilevers are approximately 70 µm long, with a 500-700 nm long tip integrated directly above the write heater. The apex of each tip has a radius on the scale of a few nanometers allowing data to be written at extremely high densities
Animated View of Millipede



Writing data

Bits are written by heating a resistor built into the cantilever to a temperature of 400 degrees Celsius.
The hot tip softens the polymer and briefly sinks into it,&
generating an indentation.
Reading Data

For reading, the resistor is operated at lower temperature, typically 300 degrees Celsius, which does not soften the polymer.
When the tip drops into an indentation, the resistor is cooled by the resulting better heat transport, and a measurable change in resistance occurs.
Overwriting Data

To over-write data, the tip makes a series of offset pits that overlap so closely their edges fill in the old pits, effectively erasing the unwanted data.
The write or overwrite cycles are limited to 1,00,000 cycles.


Stored bits

Fig. shows that more than 80 percent of the 1,024 cantilevers of an experimental setup were able to write data (12 storage areas at right).


Stored bits

The close-ups (center) present 40 nm (nanometers) wide indentations at a "pitch" (distance between centers of neighboring indentations) of 120 nm (left) and 40 nm (right), pitch.
Millipede Cantilever
Closed View Of Millipede


Modern disk Storage
Current state of the art

The progress of millipede storage to a commercially useful product has been slower than expected.
Huge advances in Flash and hard drives, has made the existing demonstrators unattractive for commercial production.

Millipede appears to be in a race, it has not been surpassed by newer generations of the existing technologies by the time it is ready for production.


Conclusion

Today there are no known emerging markets for nanotechnology where high density storage devices.
please read http://studentbank.in/report-millipede-d...ull-report and http://studentbank.in/report-ibm-millipe...ars-report for getting more information about MILLIPEDE
Reply
#3
[attachment=3543]


1. INTRODUCTION

Today data storage is dominated by the use of magnetic disks. Storage densities of about more than 5 Gb/cmhave been achieved. In the past 40 years areal density has increased by 6 orders of magnitude. But there is a physical limit. It has been predicted that superparamagnetic effects- the bit size at which stored information become volatile as a function of time- will limit the densities of current longitudinal recording media to about 15.5 Gb/cm2.In the near future century nanometer scale will presumably pervade the field of data storage. In magnetic storage used today, there is no clear-cut way to achieve the nanometer scale in all three dimensions. So new techniques like holographic memory and probe based data storage are emerging. If an emerging technology is to be considered as a serious candidate to replace an existing technology, it should offer long-term perspectives. Any new technology with better areal density than today's magnetic storage should have long-term potential for further scaling, desirably down to nanometer or even atomic scale.
The only available tool known today that is simple and yet offer these long-term perspectives is a nanometer-sharp tip like in atomic force microscope (AFM) and scanning tunneling microscope (STM). The simple tip is a very reliable tool that concentrates on one functionality: the ultimate local confinement of interaction. In local probe based data storage we have a cantilever that has a very small tip at its end. Small indentations are made in a polymer medium laid over a silicon substrate. These indentations serve as data storage locations. A single AFM operates best on the microsecond time scale. Conventional magnetic storage, however, operates at best on the nanosecond time scale, making it clear that AFM data rates have to be improved by at least three orders of magnitude to be competitive with current and future magnetic recording. The "millipede" concept is a new approach for storing data at high speed and with an ultrahigh density.
1.1 MOTIVATION AND OBJECTIVES:
In the 21stcentury, the nanometer will very likely play a role similar to the one played by the micrometer in the 20thcentury. The nanometer scale will presumably pervade the field of data storage. In magnetic storage today, there is no clear-cut way to achieve the nanometer scale in all three dimensions. The basis for storage in the 21st century might still be magnetism. Within a few years, however, magnetic storage technology will arrive at a stage of its exciting and successful evolution at which fundamental changes are likely to occur when current storage technology hits the well- known superparamagnetic limit. Several ideas have been proposed on how to overcome this limit. One such proposal involves the use of patterned magnetic media, for which the ideal write/read concept must still be demonstrated, but the biggest challenge remains the patterning of the magnetic disk in a cost-effective way. Other proposals call for totally different media and techniques such as local probes or holographic methods. In general, if an existing technology reaches its limits in the course of its evolution and new alternatives are emerging in parallel, two things usually happen: First, the existing and well-established technology will be explored further and everything possible done to push its limits to take maximum advantage of the considerable investments made. Then, when the possibilities for improvements have been exhausted, the technology may still survive for certain niche applications, but the emerging technology will take over, opening up new perspectives and new directions.
Consider, for example, the vacuum electronic tube, which was replaced by the transistor. The tube still exists for a very few applications, whereas the transistor evolved into today's microelectronics with very large scale integration (VLSI) of microprocessors and memories. Optical lithography may become another example: Although still the predominant technology, it will soon reach its fundamental limits and be replaced by a technology yet unknown. Today we are witnessing in many fields the transition from structures of the micrometer scale to those of the nanometer scale, a dimension at which nature has long been building the finest devices with a high degree oflocal functionality. Many of the techniques we use today are not suitable for the coming nanometer age; some will require minor or major modifications, and others will be partially or entirely replaced. It is certainly difficult to predict which techniques will fall into which category. For key areas in information technology hardware, it is not yet obvious which technology and materials will be used for nanoelectronics and data storage.
In any case, an emerging technology being considered as a serious candidate to replace an existing but limited technology must offer long-term perspectives. For instance, the silicon microelectronics and storage industries are huge and requirecorrespondingly enormous investments, which makes them long-term-oriented by nature.The consequence for storage is that any new technique with better areal storage densityhan today's magnetic recording should have long-term potential for further scaling, desirably down to the nanometer or even atomic scale.
The only available tool known today that is simple and yet provides these
very long-term perspectives is a nanometer sharp tip. Such tips are now used in every atomic force microscope (AFM) and scanning tunneling microscope (STM) for imaging and structuring down to the atomic scale. The simple tip is a very reliable tool that concentrates on one functionality: the ultimate local confinement of interaction.
In the early 1990â„¢s, Mamin and Rugar at the IBM Almaden Research Center pioneered the possibility of using an AFM tip for readback and writing of topographic features for the purposes of data storage. In one scheme developed by them, reading and writing were demonstrated with a single AFM tip in contact with a rotating polycarbonate substrate. The data were written thermo mechanically via heating of the tip. In this way, densities of up to 30 Gb/in.2were achieved, representing a significant advance compared to the densities of that day. Later refinements included increasing readback speeds to a data rate of 10 Mb/s and implementation of track servoing
In making use of single tips in AFM or STM operation for storage, one must deal with their fundamental limits for high data rates. At present, the mechanical resonant frequencies of the AFM cantilevers limit the data rates of a single cantilever to a few Mb/s for AFM data storage, and the feedback speed and low tunneling currents limit STM-based storage approaches to even lower data rates. Currently a single AFM operates at best on the microsecond time scale. Conventional magnetic storage, however, operates at best on the nanosecond time scale, making it clear that AFM data rates have to be improved by at least three orders of magnitude to be competitive with current and future magnetic recording. The objectives of our research activities within the Micro- and Nanomechanics Project at the IBM Zurich Research Laboratory are to explore highly parallel AFM data storage with areal storage densities far beyond the expected superparamagnetic limit (60100 Gb/in.
1.2 MILLIPEDE MEMORY

Millipede is a non-volatile computer memory stored on nanoscopic pits burned into the surface of a thin polymer layer, read and written by a MEMS-based probe. It promises a data density of more than 1 terabit per square inch (1 gigabit per square millimeter), about 4 times the density of magnetic storage available today.
Millipede storage technology is being pursued as a potential replacement for magnetic recording in hard drives, at the same time reducing the form-factor to that of Flash media. IBM demonstrated a prototype s Millipede storage device at CeBIT 2005, and is trying to make the technology commercially available by the end of 2007. At launch, it will probably be more expensive per-megabyte than prevailing technologies, but this disadvantage is hoped to be offset by the sheer storage capacity that technology Millipede technology would offer.
The Millipede concept presented here is a new approach for storing data at high speed and with an ultrahigh density. It is not a modification of an existing storage technology, although the use of magnetic materials as storage media is not excluded. The ultimate locality is given by a tip, and high data rates are a result of massive parallel operation of such tips. Our current effort is focused on demonstrating the Millipede concept with areal densities up to 500 Gb/in.2 and parallel operation of very large 2D (32 × 32) AFM cantilever arrays with integrated tips and write/read storage functionality.
1.3 THE NAME MILLIPEDE

The name Millipede came from the way the technology works. It consists of a thin, organic polymer on which sit thousands of fine silicon tips that can punch information into the polymer surface, leaving pits and creating a way of storing data. Each tip is very small, with 4,000 fitting onto a 6.4 mm square. The unveiling at the CeBIT event was not only to show off the tech but also to try to get a manufacturing partner on board. IBM does not have the facilities to manufacture MEMS systems, and needs another interested party to come on board that has those facilities available. Big Blue also admits that the technology is nowhere near ready for a release, as researchers still need to sort out the speed that data can be transferred to and from the memory. IBM does hope, however, that Millipede will form a future alternative to current flash memory technologies used in consumer digital equipment.
1.4 BASIC CONCEPT
The main memory of modern computers is constructed from one of a number of DRAM-related devices. DRAM basically consists of a series of capacitors, which store data as the presence or absence of electrical charge. Each capacitor and its associated control circuitry, referred to as a cell, holds one bit, and bits can be read or written in large blocks at the same time.
In contrast, hard drives store data on a metal disk that is covered with a magnetic material; data is represented as local magnetization of this material. Reading and writing are accomplished by a single "head", which waits for the requested memory location to pass under the head while the disk spins. As a result, the drive's performance is limited by the mechanical speed of the motor, and is generally hundreds of thousands of times slower than DRAM. However, since the "cells" in a hard drive are much smaller, the storage density is much higher than DRAM.
Millipede storage attempts to combine the best features of both. Like the hard drive, Millipede stores data in a "dumb" medium that is simpler and smaller than any cell used in an electronic medium. It accesses the data by moving the medium under the "head" as well. However, Millipede uses many nanoscopic heads that can read and write in parallel, thereby dramatically increasing the throughput to the point where it can compete with some forms of electronic memory. Additionally, millipede's physical media stores a bit in a very small area, leading to densities even higher than current hard drives. Mechanically, Millipede uses numerous atomic force probes, each of which is responsible for reading and writing a large number of bits associated with it. Bits are stored as a pit, or the absence of one, in the surface of a thermo-active polymer deposited as a thin film on a carrier known as the sled. Any one probe can only read or write a fairly small area of the sled available to it, a storage field. Normally the sled is moved to position the selected bits under the probe using electromechanical actuators similar to those that position the read/write head in a typical hard drive, although the actual distance moved is tiny. The sled is moved in a scanning pattern to bring the requested bits under the probe, a process known as x/y scan.
The amount of memory serviced by any one field/probe pair is fairly small, but so is its physical size. Many such field/probe pairs are used to make up a memory device. Data reads and writes can be spread across many fields in parallel, increasing the throughput and improving the access times. For instance, a single 32-bit value would normally be written as a set of single bits sent to 32 different fields. In the initial experimental devices, the probes were mounted in a 32x32 grid for a total of 1,024 probes. Their layout looked like the legs on a Millipede and the name stuck.
The design of the cantilever array is the trickiest part, as it involves making numerous mechanical cantilevers, on which a probe has to be mounted. All the cantilevers are made entirely out of silicon, using surface micromachining at the wafer surface.




Figure 1.4: Architecture Of Millipede
The Millipede concept: for operation of the device, the storage medium “ a thin film of organic material deposited on a silicon "table" - is brought into contact with the array of silicon tips and moved in x- and y-direction for reading and writing. Multiplex drivers allow addressing of each tip individually.
The 2D AFM cantilever array storage technique called Millipede is illustrated in figure. It is based on a mechanical parallel x/y scanning of either the entire cantilever array chip or the storage medium. In addition, a feedback-controlled z- approaching and -leveling scheme brings the entire cantilever array chip into contact with the storage medium. This tip medium contact is maintained and controlled while x/y scanning is performed for write/read. It is important to note that the Millipede approach is not based on individual z-feedback for each cantilever; rather, it uses a feedback control for the entire chip, which greatly simplifies the system. However, this requires stringent control and uniformity of tip height and cantilever bending. Chip approach and leveling make use of four integrated approaching cantilever sensors in the corners of the array chip to control the approach of the chip to the storage medium. Signals from three sensors (the fourth being a spare) provide feedback signals to adjust three magnetic z-actuators until the three approaching sensors are in contact with the medium. The three sensors with the individual feedback loop maintain the chip leveled and in contact with the surface while x/y scanning is performed for write/read operations. The system is thus leveled in a manner similar to an antivibration air table. This basic concept of the entire chip approach/leveling has been tested and demonstrated for the first time by parallel imaging with a 5 × 5 array chip . These parallel imaging results have shown that all 25 cantilever tips have approached the substrate within less than 1 m of z-activation. This promising result has led us to believe that chips with a tip-apex height control of less than 500 nm are feasible. This stringent requirement for tip-apex uniformity over the entire chip is a consequence of the uniform force needed to minimize or eliminate tip and medium wear due to large force variations resulting from large tip-height non uniformities.
During the storage operation, the chip is raster-scanned over an area called the storage field by a magnetic x/y scanner. The scanning distance is equivalent to the cantilever x/y pitch, which is currently 92 m. Each cantilever/tip of the array writes and reads data only in its own storage field. This eliminates the need for lateral positioning adjustments of the tip to offset lateral position tolerances in tip fabrication. Consequently, a 32 × 32 array chip will generate 32 × 32 (1024) storage fields on an area of less than 3 mm × 3 mm. Assuming an areal density of 500 Gb/in.2, one storage field of 92 m × 92 m has a capacity of about 10 Mb, and the entire 32 × 32 array with 1024 storage fields has a capacity of about 10 Gb on 3 mm × 3 mm. As shown in Section 7, the storage capacity scales with the number of elements in the array, cantilever pitch (storage-field size) and areal density, and depends on the application requirements. Although not yet investigated in detail, lateral tracking will also be performed for the entire chip, with integrated tracking sensors at the chip periphery.
This assumes and requires very good temperature control of the array chip and the medium substrate between write and read cycles. For this reason the array chip and medium substrate should be held within about 1°C operating temperature for bit sizes of 30 to 40 nm and array chip sizes of a few millimeters. This will be achieved by using the same material (silicon) for both the array chip and the medium substrate in conjunction with four integrated heat sensors that control four heaters on the chip to maintain a constant array-chip temperature during operation. True parallel operation of large 2D arrays results in very large chip sizes because of the space required for the individual write/read wiring to each cantilever and the many I/O pads. The row and column time-multiplexing addressing scheme implemented successfully in every DRAM is a very elegant solution to this issue. In the case of Millipede, the time-multiplexed addressing scheme is used to address the array row by row with full parallel write/read operation within one row.
2. DATA STORAGE

Each probe in the cantilever array stores and reads data thermo- mechanically, handling one bit at a time. In recent years, AFM thermo mechanical recording in polymer storage media has undergone extensive modifications, primarily with respect to the integration of sensors and heaters designed to enhance simplicity and to increase data rate and storage density. Using cantilevers with heaters, thermo mechanical recording at 30 Gb/in.storage density and data rates of a few Mb/s for reading and 100 Kb/s for writing have been demonstrated.
2.1 ATOMIC FORCE MICROSCOPE PROBES

The AFM consists of a microscale cantilever with a sharp tip (probe) at its end that is used to scan the specimen surface. The cantilever is typically silicon or silicon nitride with a tip radius of curvature on the order of nanometers. When the tip is brought into proximity of a sample surface, forces between the tip and the sample lead to a deflection of the cantilever according to Hooke's law. Depending on the situation, forces that are measured in AFM include mechanical contact force, Van der Waals forces, capillary forces, chemical bonding, electrostatic forces, magnetic forces (see Magnetic force microscope (MFM)), Casimir forces, solvation forces etc. As well as force, additional quantities may simultaneously be measured through the use of specialized types of probe (see Scanning thermal microscopy, photothermal microspectroscopy, etc.). Typically, the deflection is measured using a laser spot reflected from the top of the cantilever into an array of photodiodes. Other methods that are used include optical interferometry, capacitive sensing or piezoresistive AFM cantilevers. These cantilevers are fabricated with piezoresistive elements that act as a strain gauge. Using a Wheatstone bridge, strain in the AFM cantilever due to deflection can be measured, but this method is not as sensitive as laser deflection or interferometry.

Figure 2.1:Microscopic probes
2.2 READING DATA
To accomplish a read, the probe tip is heated to around 300 °C and moved in proximity to the data sled. If the probe is located over a pit the cantilever will push it into the hole, increasing the surface area in contact with the sled, and in turn increasing the cooling as heat leaks into the sled from the probe. In the case where there is no pit at that location, only the very tip of the probe remains in contact with the sled, and the heat leaks away more slowly. The electrical resistance of the probe is a function of its temperature, rising with increasing temperature. Thus when the probe drops into a pit and ools, this registers as a drop in resistance. A low resistance will be translated to a "1" bit, or a "0" bit otherwise. While reading an entire storage field, the tip is dragged over the entire surface and the resistance changes are constantly monitored. Imaging and reading are done using a new thermo mechanical sensing concept. The heater cantilever originally used only for writing was given the additional function of a thermal readback sensor by exploiting its temperature-dependent resistance. The resistance ® increases nonlinearly with heating power/temperature from room temperature to a peak value of 500-700°C. The peak temperature is determined by the doping concentration of the heater platform, which ranges from 1×1017 to 2×1018.Above the peak temperature, the resistance drops as the number of intrinsic carriers increases because of thermal excitation

Figure 2.2:Mechanism of Reading Data
For sensing, the resistor is operated at about 300°C, a temperature that is not high enough to soften the polymer, as is necessary for writing. The principle of thermal sensing is based on the fact that the thermal conductance between the heater platform and the storage substrate changes according to the distance between them. The medium between a cantilever and the storage substrate”in our case air”transports heat from one side to the other. When the distance between heater and sample is reduced as the tip moves into a bit indentation, the heat transport through air will be more efficient, and the heater's temperature and hence its resistance will decrease. Thus, changes in temperature of the continuously heated resistor are monitored while the cantilever is scanned over data bits, providing a means of detecting the bits. Under typical operating conditions, the sensitivity of thermo mechanical sensing is even better than that of piezoresistive-strain sensing, which is not surprising because thermal effects in semiconductors are stronger than strain effects.

2.3 WRITING DATA
To write a bit, the tip of the probe is heated to a temperature above the glass transition temperature of the polymer used to manufacture the data sled, which is generally acrylic glass. In this case the transition temperature is around 400 °C. To write a "1", the polymer in proximity to the tip is softened, and then the tip is gently touched to it, causing a dent. To erase the bit and return it to the zero state, the tip is instead pulled up from the surface, allowing surface tension to pull the surface flat again. Older experimental systems used a variety of erasure techniques that were generally more time consuming and less successful. These older systems offered around 100,000 erases, but the available references do not contain enough information to say if this has been improved with the newer technique.
Thermomechanical writing is a combination of applying a local force by the cantilever/tip to the polymer layer and softening it by local heating. Initially, the heat transfer from the tip to the polymer through the small contact area is very poor, improving as the contact area increases. This means that the tip must be heated to a relatively high temperature (about 400°C) to initiate the melting process.

Figure 2.3:Mechanism Of Writing Data
Once melting has commenced, the tip is pressed into the polymer, which increases the heat transfer to the polymer, increases the volume of melted polymer, and hence increases the bit size. Our rough estimates indicate that at the beginning of the writing process only about 0.2% of the heating power is used in the very small contact zone (1040nm2) to melt the polymer locally, whereas about 80% is lost through the cantilever legs to the chip body and about 20% is radiated from the heater platform through the air gap to the medium/substrate. After melting has started and the contact area has increased, the heating power available for generating the indentations increases by at least ten times to become 2% or more of the total heating power. With this highly nonlinear heat-transfer mechanism, it is very difficult to achieve small tip penetration and thus small bit sizes, as well as to control and reproduce the thermo mechanical writing process.
This situation can be improved if the thermal conductivity of the substrate is increased, and if the depth of tip penetration is limited. We have explored the use of very thin polymer layers deposited on Si substrates to improve these characteristics.
a. Early storage medium consisting of a bulk PMMA.
b.New storage medium for small bit sizes consisting of thin PMMA layer on top of a Si substrate separated by a cross-linked film of photoresist.
The hard Si substrate prevents the tip from penetrating farther than the film thickness allows, and it enables more rapid transport of heat away from the heated region because Si is a much better conductor of heat than the polymer. We have coated Si substrates with a 40-nm film of polymethylmethacrylate (PMMA) and achieved bit sizes ranging between 10 and 50 nm. However, we noticed increased tip wear, probably caused by the contact between Si tip and Si substrate during writing. We therefore introduced a 70-nm layer of cross-linked photoresist (SU-8) between the Si substrate and the PMMA film to act as a softer penetration stop that avoids tip wear but remains thermally stable.
2.4 ARRAY DESIGN, TECHNOLOGY AND FABRICATION

As a first step, a 5 × 5 array chip was designed and fabricated to test the basic Millipede concept. All 25 cantilevers had integrated tip heating for thermo mechanical writing and piezoresistive deflection sensing for read-back. No time- multiplexing addressing scheme was used for this test vehicle; rather, each cantilever was individually addressable for both thermo mechanical writing and piezoresistive deflection sensing. A complete resistive bridge for integrated detection has also been incorporated for each cantilever. The chip has been used to demonstrate x/y/z scanning and approaching of the entire array, as well as parallel operation for imaging. This was the first parallel imaging by a 2D AFM array chip with integrated piezoresistive deflection sensing.
The imaging results also confirmed the global chip-approaching and - leveling scheme, since all 25 tips approached the medium within less than 1 m of z- actuation. Unfortunately, the chip was not able to demonstrate parallel writing because of electro migration problems due to temperature and current density in the Al wiring of the heater. However, we learned from this 5 × 5 test vehicle that 1) global chip approaching and leveling is possible and promising, and 2) metal (Al) wiring on the cantilevers shouldPage 24IBM Millipede Division of Computer Science, SOE, CUSAT17 be avoided to eliminate electro migration and cantilever deflection due to bimorph effects while heating.
Since the heater platform functions as a write/read element and no individual cantilever actuation is required, the basic array cantilever cell becomes a simple two-terminal device addressed by multiplexed x/y wiring. The cell area and x/y cantilever pitchis 92 m × 92 m, which results in a total array size of less than 3 mm × 3 mm for the 1024 cantilevers. The cantilever is fabricated entirely of silicon for good thermal and mechanical stability. It consists of the heater platform with the tip on top, the legs acting as a soft mechanical spring, and an electrical connection to the heater. They are highly doped to minimize interconnection resistance and replace the metal wiring on the cantilever to eliminate electro migration and parasitic z-actuation of the cantilever due to the bimorph effect. The resistive ratio between the heater and the silicon interconnection sections should be as high as possible; currently the highly doped = interconnections are 400 and the heater platform is 11 k (at 4 V reading bias).
The cantilever mass must be minimized to obtain soft (flexible), high- resonant-frequency cantilevers. Soft cantilevers are required for a low loading force in order to eliminate or reduce tip and medium wear, whereas a high resonant frequency allows high-speed scanning. In addition, sufficiently wide cantilever legs are required for a small thermal time constant, which is partly determined by cooling via the cantilever legs. These design considerations led to an array cantilever with 50- m-long, 10- m- wide, 0.5- m-thick legs, and a 5- m-wide, 10- m-long, 0.5- m-thick platform. Such a cantilever has a stiffness of 1 N/m and a resonant frequency of 200 kHz. The heater time constant is a few microseconds, which should allow a multiplexing rate of 100 kHz. The tip height should be as small as possible because the heater platform sensitivity depends strongly on the distance between the platform and the medium. This contradicts the requirement of a large gap between the chip surface and the storagemedium to ensure that only the tips, and not the chip surface, are making contact with the medium. Instead of making the tips longer, we purposely bent the cantilevers a few micrometers out of the chip plane by depositing a stress-controlled plasma-enhanced chemical vapor deposition (PECVD) silicon-nitride layer at the base of the cantilever. This bending as well as the tip height must be well controlled in order to maintain an equal loading force for all cantilevers of an array
2.5 ARRAY CHARACTERIZATION

The array's independent cantilevers, which are located in the four corners of the array and used for approaching and leveling of chip and storage medium, are used to initially characterize the interconnected array cantilevers. Additional cantilever test structures are distributed over the wafer; they are equivalent to but independent of the array cantilevers. In the low-power, low-temperature regime, silicon mobility is affected by phonon scattering, which depends on temperature, whereas at higher power the intrinsic temperature of the semiconductor is reached, resulting in a resistivity drop due to the increasing number of carriers. The cantilevers within the array are electrically isolated from one another by integrated Schottky diodes. The tip-apex height uniformity within an array is very important because it determines the force of each cantilever while in contact with the medium and hence influences write/read performance as well as medium and tip wear. Wear investigations suggest that a tip-apex height uniformity across the chip of less tha 500 nm is required, with the exact number depending on the spring constant of the cantilever. In the case of the Millipede, the tip-apex height is determined by the tip height
and the cantilever bending.
3. FEATURES

1. Storage capacity “ 1 terabit per square inch
2. Equal to 25 DVD
3. 25 billion texts in a stamp sized surface
4. Enable 10Gb of storage in cell phones
5. Uses atomic force probes
6. Data reads & writes in the storage field
7. Access time is small
8. Data rate is 1Gb/s
9. Needs less power about 100mw

3.1 AREAL DENSITY

DRAM10 Gb/ Sq inch
Flash Drive25 Gb/ Sq inch
Hard Drive250 Gb/ Sq inch
Millipede1 Tb/ Sq inch
4.APPLICATIONS

Millipede systems can be used for micro drives, which will feature very
mall form factor, enabling use in small footprint devices like watches, mobile phones and personal media systems, and at the same time provide high capacity. The very high data density of Millipede systems makes them a very good candidate to be put to this use.
4.1 SMALL FORM FACTOR STORAGE SYSTEM (NANODRIVE)
IBM's recent product announcement of the Microdrive represents a first successful step into miniaturized storage systems. As we enter the age of pervasive computing, we can assume that computer power is available virtually everywhere. Miniaturized and low-power storage systems will become crucial, particularly for mobile applications. The availability of storage devices with gigabyte capacity having a very mall form factor (in the range of centimeters or even millimeters) will open up new possibilities to integrate such Nanodrives into watches, cellular telephones, laptops, etc., provided such devices have low power consumption.
The array chip with integrated or hybrid electronics and the micro magnetic scanner are key elements demonstrated for a Millipede -based device called Nanodrive, which is of course also very interesting for audio and video consumer applications. All-silicon, batch fabrication, low-cost polymer media, and low power consumption make Millipede very attractive as a centimeter- or even millimeter-sized gigabyte storage system.
4.2 TERABIT DRIVE
The potential for very high areal density renders the Millipede also very attractive for high-end terabit storage systems. As mentioned, terabit capacity can be achieved with three Millipede-based approaches:
1)Very large arrays,
2) Many smaller arrays operating in parallel, and
3) Displacement of small/medium-sized arrays over large media.
Although the fabrication of considerably larger arrays (105 to 106 cantilevers) appears to be possible, control of the thermal linear expansion will pose a considerable challenge as the array chip becomes significantly larger. The second approach is appealing because the storage system can be upgraded to fulfill application requirements in a modular fashion by operating many smaller Millipede units in parallel. The operation of the third approach was described above with the example of a modified hard disk. This approach combines the advantage of smaller arrays with the displacement of the entire array chip, as well as repositioning of the polymer-coated disk to a new storage location on the disk. A storage capacity of several terabits appears to be achievable on 2.5- and 3.5-in. disks. In addition, this approach is an interesting synergy of existing, reliable (hard-disk drive) and new (Millipede) technologies.

4.3 HIGH CAPACITY HARD DRIVES

The Millipede system provides high data density, low seek times, low power consumption and, probably, high reliability. These features make them candidates for building high capacity hard drives, with storage capacity in the range of terabytes. Although the data density of a Millipede is high, the capacity of an individual device is expected to be relatively low -- on the order of single gigabytes. Thus replacing hard a drive probably requires economically collecting around 100 Millipede devices into a single enclosure.

5. CURRENT STATE OF THE ART

The progress of Millipede storage to a commercially useful product has been slower than expected. Huge advances in other competing storage systems, notably Flash and hard drives, has made the existing demonstrators unattractive for commercial production. Millipede appears to be in a race, attempting to mature quickly enough at a given technology level that it has not been surpassed by newer generations of the existing technologies by the time it is ready for production.
The earliest generation Millipede devices used probes 10 nanometers in diameter and 70 nanometers in length, producing pits about 40 nm in diameter on fields 92 m x 92 m. Arranged in a 32 x 32 grid, the resulting 3 mm x 3 mm chip stores 500 megabits of data or 62.5 MB, resulting in an areal density, the number of bits per square inch, on the order of 200 Gbit/in². IBM initially demonstrated this device in 2003, planning to introduce it commercially in 2005. By that point hard drives were approaching 150 Gbit/in², and have since surpassed it.
More recent devices demonstrated at CeBIT in 2008 have improved on the basic design, using a 64 x 64 cantilever chips with a 7 mm x 7 mm data sled, boosting the data storage capacity to 800 Gbit/in² using smaller pits. It appears the pit size can scale to about 10 nm, resulting in a theoretical areal density just over 1Tbit/in². IBM now plans to introduce devices based on this sort of density in 2007. For comparison, the very latest perpendicular recording hard drives feature areal densities on the order of 230 Gbit/in², and appear to top out at about 1 Tbit/in². Semiconductor-based memories offer much lower density, 10 Gbit/in² for DRAM and about 250 Mbit/in² for Flash RAM.
6. ONGOING DEVELOPMENTS

For the first time, it has fabricated and operated large 2D AFM arrays for thermo mechanical data storage in thin polymer media. In doing so, it has demonstrated key milestones of the Millipede storage concept. The 400 - 500-Gb/in.2 storage density we have demonstrated with single cantilevers is among the highest reported so far. The initial densities of 100 “ 200 Gb/in.2 achieved with the 32 × 32 array are very encouraging, with the potential of matching those of single cantilevers. Well-controlled processing techniques have been developed to fabricate array chips with good yield and uniformity. This VLSINEMS chip has the potential to open up new perspectives in many other applications of scanning probe techniques as well. Millipede is not limited to storage applications or polymer media. The concept is very general if the required functionality can be integrated on the cantilever/tip. This of course applies also to any other storage medium, including magnetic ones, making Millipede a possible universal parallel write/read head for future storage systems. Besides storage, other Millipede applications can be envisioned for large-area, high-speed imaging and high-throughput nanoscalelithography, as well as for atomic and molecular manipulation and modifications.
The smoothness of the reflowed medium allowed multiple rewriting of the same storage field. This erasing process does not allow bit-level erasing; it will erase larger storage areas. However, in most applications single-bit erasing is not required anyway, because files or records are usually erased as a whole. The erasing and multiple rewriting processes, as well as bit-stability investigations, are topics of ongoing research.
The current Millipede array chip fabrication technique is compatible withCMOS circuits, which will allow future microelectronics integration. This is expected to produce better performance and smaller system form factors, as well as lower costs.
Although it has demonstrated the first high-density storage operations with the largest 2D AFM array chip ever built, a number of issues must be addressed before the Millipede can be considered for commercial applications; a few of these are listed below:
¢ Overall system reliability, including bit stability, tip and medium wea erasing/rewriting.
¢ Limits of data rate (S/N ratio), areal density, array and cantilever size.
¢ CMOS integration.
¢ Optimization of write/read multiplexing scheme.
¢ Array-chip tracking. The near-term future activities are focused on these important aspects.
The highly parallel nanomechanical approach is novel in many respects. Recalling the transistor-to-microprocessor story mentioned at the beginning, we might ask whether a new device of a yet inconceivable level of novelty could possibly emerge from the Millipede. There is at least one feature of the Millipede that we have not yet exploited. With integrated Schottky diodes and the temperature-sensitive resistors on the current version of the Millipede array chip, we have already achieved the first and simplest level of micromechanical/electronic integration, but we are looking for much more complex ones to make sensing and actuation faster and more reliable. However, we envision something very much beyond this. Whenever there is parallel operation of functional units, there is the opportunity for sophisticated communication or logical interconnections between these units. The topology of such a network carries its own functionality and intelligence that goes beyond that of the individual devices. It could, for example, act as a processor. For the Millipede this could mean that a processor and VLSInanomechanical device may be merged to form a smart Millipede.
If the Millipede is used, for example, as an imaging device, let us say for quality control in silicon chip fabrication, the amount of information it can generate is so huge that it is difficult to transmit these data to a computer to store and process them. Furthermore, most of the data are not of interest at all, so it would make sense if only the pertinent parts were predigested by the specialized smart Millipede and then transmitted. For this purpose, communication between the cantilevers is helpful because a certain local pattern detected by a single tip can mean something in one context and something else or even nothing in another context. The context might be derived from the patterns observed by other tips. A similar philosophy could apply to the Millipede as a storage device. A smart Millipede could possibly find useful pieces of information very quickly by a built-in complex pattern recognition ability, e.g., by ignoring information when certain bit patterns occur within the array. The bit patterns are recognized instantaneously by logical interconnections of the cantilevers.
7. CONCLUSION

Millipede is a nano-storage prototype developed by IBM that can store data at a density of a trillion bits per square inch: 20 times more than any currently available magnetic storage medium. The prototype's capacity would enable the storage of 25 DVDs or 25 million pages of text on a postage-stamp sized surface, and could enable 10 gigabytes (GB) of storage capacity on a cell phone. Millipede uses thousands of tiny sharp points (hence the name) to punch holes into a thin plastic film. Each of the 10-nanometer holes represents a single bit. The pattern of indentations is a digitized version of the data. According to IBM, Millipede can be thought of as a nanotechnology version of the punch card data processing technology developed in the late 19th century. However, there are significant differences: Millipede is rewritable, and it may eventually enable storage of over 1.5 GB of data in a space no larger than a single hole in the punch card. Storage devices based on IBM's technology can be made with existing manufacturing techniques, so they will not be expensive to make. According to Peter Vettiger, head of the Millipede project, "There is not a single step in fabrication that needs to be invented." Vettiger predicts that a nano-storage device based on IBM's technology could be available as early as 2009.

8. REFERENCES

1. http://research.ibmjournal/rd/4...tiger.html
2. http://en.wikipediawiki/IBM_Millipede
3. http://domino.research.ibmcomm/...ipede.html
4. http://news.zdnet.co.uk/hardware/0,1...254,00.htm
5. http://news.cnetPhotos-IBMs-Millipede-packs-
Reply
#4
[attachment=6401]

MILLIPEDE

ABSTRACT

"Millipede" is a new (AFM)-based data storage concept that has a potentially ultrahigh density, terabit capacity, small form factor, and high data rate. Its potential for ultrahigh storage density has been demonstrated by a new thermomechanical local-probe technique to store and read back data in very thin polymer films. With this new technique, 3040-nm-sized bit indentations of similar pitch size have been made by a single cantilever/tip in a thin (50-nm) polymethylmethacrylate (PMMA) layer, resulting in a data storage density of 400500 Gb/in.2

High data rates are achieved by parallel operation of large two-dimensional (2D) AFM arrays that have been batch-fabricated by silicon surface-nMcromachining techniques. The very large scale integration (VLSI) of micro/nanomechanical devices (cantilevers/tips) on a single chip leads to the largest and densest 2D array of 32 x 32 (1024) AFM cantilevers with integrated write/read storage functionality ever built. Initial areal densities of 100200 Gb/in.2 have been achieved with the 32 x 32 array chip, which has potential for further improvements.

In addition to data storage in polymers or other media, and not excluding magnetics, we envision areas in nanoscale science and technology such as lithography, high-speed/large-scale imaging, molecular and atomic manipulation, and many others in which Millipede may open up new perspectives and opportunities.

INTRODUCTION
In the 21st century, the nanometer will very likely play a role similar to the one played by the micrometer in the 20th century. The nanometer scale will presumably pervade the field of data storage. Within a few years, however, magnetic storage technology will arrive at a stage of its exciting and successful evolution at which fundamental changes are likely to occur when current storage technology hits the superparamagnetic limit.
In any case, an emerging technology being considered as a serious candidate to replace an existing but the technology must offer long-term perspectives. The only available tool known today that is simple and yet provides these very long-term perspectives is a nanometer sharp tip. Such tips are now used in every atomic force microscope (AFM) and scanning tunneling microscope (STM) for imaging and structuring down to the atomic scale.
The objectives of our research activities within the Micro- and Nanomechanics Project at the IBM Zurich Research Laboratory are to explore highly parallel AFM data storage with areal storage densities far beyond the expected superparamagnetic limit (60100 Gb/in.2) and data rates comparable to those of today's magnetic recording. The "Millipede" concept presented here is a new approach for storing data at high speed and with an ultrahigh density. Our current effort is focused on demonstrating the Millipede concept with areal densities up to 500 Gb/in.2 and parallel operation of very large 2D (32 x 32) AFM cantilever arrays with integrated tips and write/read storage functionality.


Reply
#5
[attachment=7289]
IBM MILLIPEDE


ABSTRACT


Using innovative nanotechnology, IBM scientists have demonstrated a data storage density of a trillion bits per square inch -- 20 times higher than the densest magnetic storage available today. Rather than using traditional magnetic or electronic means to store data, Millipede uses thousands of nano-sharp tips to punch indentations representing individual bits into a thin plastic film. The result is akin to a nanotech version of the venerable data processing punch card developed more than 110 years ago, but with two crucial differences: the Millipede technology is re-writeable (meaning it can be used over and over again), and may be able to store more than 3 billion bits of data in the space occupied by just hole in a standard punch card. While flash memory is not expected to surpass 1-2 gigabytes of capacity in the near term, Millipede technology could pack 10 - 15 gigabytes of data into the same tiny format, without requiring more power for device operation.
Millipede" is a new (AFM)-based data storage concept that has a potentially ultrahigh density, terabit capacity, small form factor, and high data rate. Its potential for ultrahigh storage density has been demonstrated by a new thermo mechanical local-probe technique to store and read back data in very thin polymer films. With this new technique, 3040-nm-sized bit indentations of similar pitch size have been made by a single cantilever/tip in a thin (50-nm) polymethylmethacrylate (PMMA) layer, resulting in a data storage density of 400500 Gb/in.2
High data rates are achieved by parallel operation of large two-dimensional (2D) AFM arrays that have been batch-fabricated by silicon surface-nMcromachining techniques. The very large scale integration (VLSI) of micro/nanomechanical devices (cantilevers/tips) on a single chip leads to the largest and densest 2D array of 32 x 32 (1024) AFM cantilevers with integrated write/read storage functionality ever built. Initial areal densities of 100200 Gb/in.2 have been achieved with the 32 x 32 array chip, which has potential for further improvements.
In addition to data storage in polymers or other media, and not excluding magnetics, we envision areas in nanoscale science and technology such as lithography, high-speed/large-scale imaging, molecular and atomic manipulation, and many others in which Millipede may open up new perspectives and opportunities.
The Millipede project could bring tremendous data capacity to mobile devices such as personal digital assistants, cellular phones, and multifunctional watches. In addition, we are also exploring the use of this concept in a variety of other applications, such as large-area microscopic imaging, nanoscale lithography or atomic and molecular manipulation.

1 Introduction

Millipede is storage technology developed by IBM.Millipede is a non-volatile computer memory stored on nanoscopic pits.
It promises a data density of more than 1 terabit per square inch (1 gigabit per square millimeter), about 4 times the density of magnetic storage available today.
Millipede storage technology is being pursued as a potential replacement for magnetic recording in hard drives, at the same time reducing the form-factor to that of Flash media.
IBM says flash memory probably won't surpass 1GB to 2GB of capacity in the near term, but Millipede technology could pack 10GB to 15GB of data into the same small format without requiring additional power for device operation.
Working procedure:
Thousands of extremely fine tips "write" tiny pits representing individual bits into a thin film of highly specific polymer.
Bits are written by heating the tip to a temperature above the glass transition temperature of the polymer by means of the heating resistor integrated in the cantilever.
The principle is comparable with the old punch cards, but now with structural dimensions in the nanometer scale and the ability to erase data and rewrite the medium.

1.1 What is IBM Millipede?

Millipede is a nano-storage prototype developed by IBM that can store data at a density of a trillion bits per square inch: 20 times more than any currently available magnetic storage medium. The prototype's capacity would enable the storage of 25 DVDs or 25 million pages of text on a postage-stamp sized surface, and could enable 10 gigabytes (GB) of storage capacity on a cell phone.

1.2 MOTIVATION AND OBJECTIVES

In the 21stcentury, the nanometer will very likely play a role similar to the one played by the micrometer in the 20thcentury. The nanometer scale will presumably pervade the field of data storage. In magnetic storage today, there is no clear-cut way to achieve the nanometer scale in all three dimensions. The basis for storage in the 21st century might still be magnetism. Within a few years, however, magnetic storage technology will arrive at a stage of its exciting and successful evolution at which fundamental changes are likely to occur when current storage technology hits the well- known superparamagnetic limit. Several ideas have been proposed on how to overcome this limit. One such proposal involves the use of patterned magnetic media, for which the ideal write/read concept must still be demonstrated, but the biggest challenge remains the patterning of the magnetic disk in a cost-effective way. Other proposals call for totally different media and techniques such as local probes or holographic methods.
In general,if an existing technology reaches its limits in the course of its evolution & newalternatives are emerging in parallel, two things usually happen: First, the existing andwell-established technology will be explored further and everything possible done topush its limits to take maximum advantage of the considerable investments made. Then,when the possibilities for improvements have been exhausted, the technology may still survive for certain niche applications, but the emerging technology will take over, opening up new perspectives and new directions.
Consider, for example, the vacuum electronic tube, which was replaced by the transistor. The tube still exists for a very few applications, whereas the transistor evolved into today's microelectronics with very large scale integration (VLSI) of microprocessors and memories. Optical lithography may become another example: Although still the predominant technology, it will soon reach its fundamental limits and be replaced by a technology yet unknown. Today we are witnessing in many fields the transition from structures of the micrometer scale to those of the nanometer scale, a dimension at which nature has long been building the finest devices with a high degree of local functionality. Many of the techniques we use today are not suitable for the coming nanometer age; some will require minor or major modifications, and others will be partially or entirely replaced. It is certainly difficult to predict which techniques will fall into which category. For key areas in information technology hardware, it is not yet obvious which technology and materials will be used for nanoelectronics and data storage.
In any case, an emerging technology being considered as a serious candidate to replace an existing but limited technology must offer long-term perspectives. For instance, the silicon microelectronics and storage industries are huge and require correspondingly enormous investments, which makes them long-term-oriented by nature. The consequence for storage is that any new technique with better areal storage density than today's magnetic recording should have long-term potential for further scaling, desirably down to the nanometer or even atomic scale.
The only available tool known today that is simple and yet provides these very long-term perspectives is a nanometer sharp tip. Such tips are now used in every atomic force microscope (AFM) and scanning tunneling microscope (STM) for imaging and structuring down to the atomic scale. The simple tip is a very reliable tool that concentrates on one functionality: the ultimate local confinement of interaction. In the early 1990’s, Mamin and Rugar at the IBM Almaden Research Center pioneered the possibility of using an AFM tip for readback and writing of topographic features for the purposes of data storage. In one scheme developed by them, reading and writing were demonstrated with a single AFM tip in contact with a rotating polycarbonate substrate. The data were written thermo mechanically via heating of the tip. In this way, densities of up to 30 Gb/in.were achieved, representing a significant advance compared to the densities of that day. Later refinements included increasing readback speeds to a data rate of 10 Mb/s and implementation of track servoing. In making use of single tips in AFM or STM operation for storage, one must deal with their fundamental limits for high data rates. At present, the mechanical resonant frequencies of the AFM cantilevers limit the data rates of a single cantilever to a few Mb/s for AFM data storage, and the feedback speed and low tunneling currents limit STM-based storage approaches to even lower data rates. Currently a single AFM operates at best on the microsecond time scale. Conventional magnetic storage, however, operates at best on the nanosecond time scale, making it clear that AFM data rates have to be improved by at least three orders of magnitude to be competitive with current and future magnetic recording. The objectives of our research activities within the Micro- and Nanomechanics Project at the IBM Zurich Research Laboratory are to explore highly parallel AFM data storage with areal storage densities far beyond the expected superparamagnetic limit (60100 Gb/in.) and data rates comparable to those of today's magnetic recording.

1.3 MILLIPEDE MEMORY

Millipede is a non-volatile computer memory stored on nanoscopic pits burned into the surface of a thin polymer layer, read and written by a MEMS-based probe. It promises a data density of more than 1 terabit per square inch (1 gigabit per square millimeter), about 4 times the density of magnetic storage available today. Millipede storage technology is being pursued as a potential replacement for magnetic recording in hard drives, at the same time reducing the form-factor to that of Flash media. IBM demonstrated a prototype s Millipede storage device at CeBIT 2005, and is trying to make the technology commercially available by the end of 2007. At launch, it will probably be more expensive per-megabyte than prevailing technologies, but this disadvantage is hoped to be offset by the sheer storage capacity that technology Millipede technology would offer.
The Millipede concept presented here is a new approach for storing data at high speed and with an ultrahigh density. It is not a modification of an existing storage technology, although the use of magnetic materials as storage media is not excluded. The ultimate locality is given by a tip, and high data rates are a result of massive parallel operation of such tips. Our current effort is focused on demonstrating the Millipede concept with areal densities up to 500 Gb/in.and parallel operation of very large 2D (32 × 32) AFM cantilever arrays with integrated tips and write/read storage functionality.

1.4 THE NAME MILLIPEDE

The name Millipede came from the way the technology works. It consists of a thin, organic polymer on which sit thousands of fine silicon tips that can punch information into the polymer surface, leaving pits and creating a way of storing data. Each tip is very small, with 4,000 fitting onto a 6.4 mm square. The unveiling at the CeBIT event was not only to show off the tech but also to try to get a manufacturing partner on board. IBM does not have the facilities to manufacture MEMS systems, and needs another interested party to come on board that has those facilities available. Big Blue also admits that the technology is nowhere near ready for a release, as researchers still need to sort out the speed that data can be transferred to and from the memory. IBM does hope, however, that Millipede will form a future alternative to current flash memory technologies used in consumer digital equipment.

1.5 BASIC CONCEPT

The main memory of modern computers is constructed from one of a number of DRAM-related devices. DRAM basically consists of a series of capacitors, which store data as the presence or absence of electrical charge. Each capacitor and its associated control circuitry, referred to as a cell, holds one bit, and bits can be read or written in large blocks at the same time.
In contrast, hard drives store data on a metal disk that is covered with a magnetic material; data is represented as local magnetization of this material. Reading and writing are accomplished by a single "head", which waits for the requested memory location to pass under the head while the disk spins. As a result, the drive's performance is limited by the mechanical speed of the motor, and is generally hundreds of thousands of times slower than DRAM. However, since the "cells" in a hard drive are much smaller, the storage density is much higher than DRAM.
Millipede storage attempts to combine the best features of both. Like the hard drive, Millipede stores data in a "dumb" medium that is simpler and smaller than any cell used in an electronic medium. It accesses the data by moving the medium under the "head" as well. However, Millipede uses many nanoscopic heads that can read and write in parallel, thereby dramatically increasing the throughput to the point where it can compete with some forms of electronic memory. Additionally, millipede's physical media stores a bit in a very small area, leading to densities even higher than current hard drives. Mechanically, Millipede uses numerous atomic force probes, each of which is responsible for reading and writing a large number of bits associated with it. Bits are stored as a pit, or the absence of one, in the surface of a thermo-active polymer deposited as a thin film on a carrier known as the sled. Any one probe can only read or write a fairly small area of the sled available to it, a storage field. Normally the sled is moved to position the selected bits under the probe using electromechanical actuators similar to those that position the read/write head in a typical hard drive, although the actual distance moved is tiny. The sled is moved in a scanning pattern to bring the requested bits under the probe, a process known as x/y scan.
The amount of memory serviced by any one field/probe pair is fairly small, but so is its physical size. Many such field/probe pairs are used to make up a memory device. Data reads and writes can be spread across many fields in parallel, increasing the throughput and improving the access times. For instance, a single 32-bit value would normally be written as a set of single bits sent to 32 different fields. In the initial experimental devices, the probes were mounted in a 32x32 grid for a total of 1,024 probes. Their layout looked like the legs on a Millipede and the name stuck. The design of the cantilever array is the trickiest part, as it involves making numerous mechanical cantilevers, on which a probe has to be mounted. All the cantilevers are made entirely out of silicon, using surface micromachining at the wafer surface.
The Millipede concept: for operation of the device, the storage medium - a thin film of organic material deposited on a silicon "table" - is brought into contact with the array of silicon tips and moved in x- and y-direction for reading and writing. Multiplex drivers allow addressing of each tip individually. The 2D AFM cantilever array storage technique called “Millipede” is illustrated in figure. It is based on a mechanical parallel x/y scanning of either the entire cantilever array chip or the storage medium. In addition, a feedback-controlled z- approaching and -leveling scheme brings the entire cantilever array chip into contact with the storage medium. This tip medium contact is maintained and controlled while x/y scanning is performed for write/read. It is important to note that the Millipede approach is not based on individual z-feedback for each cantilever; rather, it uses a feedback control for the entire chip, which greatly simplifies the system. However, this requires stringent control and uniformity of tip height and cantilever bending. Chip approach and leveling make use of four integrated approaching cantilever sensors in the corners of the array chip to control the approach of the chip to the storage medium. Signals from three sensors (the fourth being a spare) provide feedback signals to adjust three magnetic z-actuators until the three approaching sensors are in contact with the medium. The three sensors with the individual feedback loop maintain the chip leveled and in contact with the surface while x/y scanning is performed for write/read operations. The system is thus leveled in a manner similar to an antivibration air table. This basic concept of the entire chip approach/leveling has been tested and demonstrated for the first time by parallel imaging with a 5 × 5 array chip . These parallel imaging results have shown that all 25 cantilever tips have approached the substrate within less than 1 m of z-activation. This promising result has led us to believe that chips with a tip-apex height control of less than 500 nm are feasible. This stringent requirement for tip-apex uniformity over the entire chip is a consequence of the uniform force needed to minimize or eliminate tip and medium wear due to large force variations resulting from large tip-height nonuniformities.

Reply
#6
Presented By:-
Varun Khandelwal

[attachment=9893]
What is millipede ?
• Millipede is a non-volatile computer memory.
• IBM demonstrated a prototype of millipede at CeBIT 2005.
• Data is stored as pits burned into the surface of a thin polymer layer.
• Read and write is done by a MEMS-based probe.
• Seen as potential replacement for magnetic recording in hard drives.
How it is ?
• Millipede uses thousands of nano-sharp tips to punch indentations representing individual bits into a thin polymer film.
• The 'Millipede' technology is re-writeable.
• Can store more than 3 billion bits of data in the space occupied by just one hole in a standard punch card.
• Their layout looked like the legs of a millipede, and hence the name.
Need of Millipede ?
• Flash memory cannot surpass 1-2 gigabytes of capacity, whereas Millipede technology could pack 10 - 15 gigabytes of data into the same tiny format.
• Power required will be same as that of flash memory.
• The Millipede can add tremendous data capacity to mobile devices such as PDA, cellular phones.
• Data storage density is 1 Tb/inch^2, equivalent to storing the content of 25 DVDs on the size of a postal stamp.
The Millipede concept
• The main memory of modern computers is constructed from number of DRAM-related devices.
• DRAM store data as the presence or absence of electrical charge.
• Hard drive store data on a metal disk.
• Data is represented as local magnetization of the material.
• Reading and writing is accomplished by a single “head”.
• The drive's performance is dependent on how fast the disk spins.
• Millipede storage combine the best features of both.
• Millipede uses numerous probes,for reading and writing.
• Bits are stored as a pit, in the surface of a thermo-active polymer known as the “sled”.
• The sled is moved in a scanning pattern to bring the requested bits under the probe, a process known as x/y scan.
• The core components of probe storage system are
(1) A two-dimensional array of silicon probes (cantilevers)
(2) A micro-mechanical scanner which moves the storage medium relative to the array.
• Animated View of Millipede
• An animated view of the Millipede storage device illustrates how an individual tip creates an indentation in a polymer surface (bottom) and how a large number of such tips are operated in parallel (top).
What is a Cantilever ?
• Millipede has cantilever array, on which a probe has to be mounted,which is made of silicon.
• For reading, writing and erasing functions, the cantilever tips are brought into contact with the storage medium.
• Most recent array design consists of an array of 64 × 64 cantilevers (4096).
• The storage medium is positioned relative to the cantilever array.
• Reading Data
• To accomplish a read, the probe tip is heated to around 300°C and moved in proximity to the data sled.
• If the probe is located over a pit,the surface area increases in contact with the sled, and cools as heat leaks into the sled from the probe.
• The electrical resistance of the probe is proportional of its temperature.
• Thus when the probe drops into a pit and cools, this registers as a drop in resistance.
• A low resistance will be translated to a "1" bit, or a "0" bit otherwise.
• Thermo-mechanical reading
Writing data
• To write a bit, the tip of the probe is heated to a temperature above the glass transition temperature of the polymer, which is generally acrylic glass.
• The transition temperature is around 400 K.
• To write a "1", the polymer in proximity to the tip is softened, and then the tip is gently touched to it, causing a dent.
• To erase the bit and return it to the zero state, the tip is instead pulled up from the surface, allowing surface tension to pull the surface flat again
• Thermo-mechanical writing
• Overwriting Data
• To over-write data, the tip makes a series of offset pits that overlap so closely that their edges fill in the old pits, effectively erasing the unwanted data.
• The write or overwrite cycles are limited to 1,00,000 cycles.
• Current data rates of individual tips is limited to kilobits/sec which is few Mbits/sec for entire array.
Stored bits
• Fig. shows that more than 80 percent of the 1,024 cantilevers of an experimental setup were able to write data (12 storage areas at right).
Usage Scenarios
Micro Drives
Millipede systems can be used for micro drives, like watches, mobile phones and personal media systems.
The very high data density of millipede systems makes them a very good candidate to be put to this use.
High-capacity hard drives
The Millipede system provides
 high data density,
 low seek times,
 low power consumption and,
 high reliability.
These features make them candidates for building high capacity hard drives.
Current state of the art
• The Earlier generation millipede devices used probes 10 nanometers in diameter and 70 nanometers in length, producing pits about 40 nm in diameter on fields 92 µm x 92 µm. This is arranged in a 32 x 32 grid, the resulting 3 mm x 3 mm chip storing 500 megabits of data or 62.5 MB, resulting in an areal density of 200 Gbit/in².
• But recent devices have used a 64 x 64 cantilever chips with a 7 mm x 7 mm data sled, the pit size is about 10 nm, resulting in a areal density just over 1Tbit/in².
Challenges
• The progress of millipede storage to a commercially useful product has been slower than expected.
• Huge advances in other competing storage systems, notably Flash and hard drives.
• More expensive per megabyte then current technology.
• It has not been surpassed by newer generations of the existing technologies but this can be a great challenge.
Conclusion
• Today there are many emerging markets for nanotechnology where high density nano storage devices are required.
• It is a nano version of punch card but rewriteable.
• Can be used in micro devices as well as in hard drive manufacturing.
• Millipedes read and write data parallely.
• High storage density of 1Tb/square inch.
Reply
#7
PRESENTED BY:
Varun K.P

[attachment=13166]
MILLIPEDE
WRITING
READING
SENSING MECHANISMS
Piezoelectric sensing
Thermo mechanical sensin
The AFM consists of a micro scale cantilever with a sharp tip (probe) at its end that is used to scan the specimen surface
Typically silicon or silicon nitride
Tip radius of curvature of the order of nanometers.
ADVANTAGES
1. Ultra high areal storage densities ranging from 1 Tbit/in2 to 2.7 Tbit/in2
2. Small form factor than any prevalent technologies.
3. The cantilevers operating in parallel provide high data rate comparable to any of prevalent technologies.
4. With only nanoscopic area of movement required, it features low seek time.
5. Low power consumption than the magnetic storage.
6. Comparatively lighter to magnetic hard disks.
Proposed APPLICATIONS
Nanodrives
- These are storage devices with gigabyte capacity having a very small form factor in the range of millimeters or centimeters and low power consumption. Such Nanodrives can be integrated into watches, cellular tele-phones, laptops, etc.
High capacity Hard drives
- The millipede technology proposes High capacity, yet lighter, cheaper and less power consuming hard disks for personal computers.
CONCLUSION
Every new technology introduced in the field of memory and storage technology has led to revolutionary changes in the field and those associated with it.
Example, the advent of the FLASHDRIVES
4 Times more storage
~ 25 DVD’s or 25 million pages postage stamp sized surface
Could enable 100 Gb of storage on a cell phone
Millipede uses thousands of tiny sharp points to punch holes into a thin plastic film
Nanotechnology version of 19th century punch card data processing technology
Can be made with existing manufacturing technique
The advent that Millipede technology can bring about is something we can only dream about.
Reply
#8
MILLIPEDE
“Millipede” is a new (AFM)-based data storage concept that has a potentially ultrahigh density, terabit capacity, small form factor, and high data rate. Its potential for ultrahigh storage density has been demonstrated by a new thermomechanical local-probe technique to store and read back data in very thin polymer films. With this new technique, 30¬40-nm-sized bit indentations of similar pitch size have been made by a single cantilever/tip in a thin (50-nm) polymethylmethacrylate (PMMA) layer, resulting in a data storage density of 400¬500 Gb/in.2 High data rates are achieved by parallel operation of large two-dimensional (2D) AFM arrays that have been batch-fabricated by silicon surface-micromachining techniques. The very large scale integration (VLSI) of micro/nanomechanical devices (cantilevers/tips) on a single chip leads to the largest and densest 2D array of 32 x 32 (1024) AFM cantilevers with integrated write/read storage functionality ever built. Time-multiplexed electronics control the write/read storage cycles for parallel operation of theMillipede array chip. Initial areal densities of 100¬200 Gb/in.2 have been achieved with the 32 × 32 array chip, which has potential for further improvements. In addition to data storage in polymers or other media, and not excluding magnetics, we envision areas in nanoscale science and technology such as lithography, high-speed/large-scale imaging, molecular and atomic manipulation, and many others in which Millipede may open up new perspectives and opportunities.
Reply
#9
[attachment=15369]
What is millipede ?
Millipede is a non-volatile  computer memory  stored on nanoscopic pits burned into the surface of a thin polymer layer, read and written by a MEMS-based probe.
Millipede storage technology is being pursued as a potential replacement for magnetic recording in hard drives, at the same time reducing the form-factor to that of Flash media. At launch, it would probably be more expensive per-megabyte than prevailing technologies, but this disadvantage is hoped to be offset by the sheer storage capacity that Millipede technology would offer.
How it is ?
Using an innovative nanotechnology, scientists have demonstrated a data storage density of a trillion bits per square inch -- 20 times higher than the densest magnetic storage available today.
Rather than using traditional magnetic or electronic means to store data, Millipede uses thousands of nano-sharp tips to punch indentations representing individual bits into a thin plastic film.
The 'Millipede' technology is re-writeable (meaning it can be used over and over again), and may be able to store more than 3 billion bits of data in the space occupied by just one hole in a standard punch card.
Need of Millipede ?
Flash memory is not expected to surpass 1-2 gigabytes of capacity in the near term, Millipede technology could pack 10 - 15 gigabytes of data into the same tiny format, without requiring more power for device operation.
"The Millipede project could bring tremendous data capacity to mobile devices such as personal digital assistants, cellular phones, and multifunctional watches,“
Using revolutionary nanotechnology, scientists have made it to the millionths of a millimeter range, achieving data storage densities of more than one terabit (1000 gigabit) per square inch, equivalent to storing the content of 25 DVDs on an area the size of a postage stamp.
The Millipede concept
The main memory of modern computers is constructed from number of DRAM-related devices. DRAM basically consists of a series of capacitors, which store data as the presence or absence of electrical charge. Each capacitor and its associated control circuitry, referred to as a cell, holds one bit, and bits can be read or written in large blocks at the same time.
Hard drives store data on a metal disk that is covered with a magnetic material; data is represented as local magnetization of this material.
Millipede storage attempts to combine the best features of both. Like the hard drive, millipede stores data in a "dumb" medium that is simpler and smaller than any cell used in an electronic medium.
Animated View of Millipede
Writing data
Bits are written by heating a resistor built into the cantilever to a temperature of 400 degrees Celsius.
The hot tip softens the polymer and briefly sinks into it,&
generating an indentation.
Reading Data
For reading, the resistor is operated at lower temperature, typically 300 degrees Celsius, which does not soften the polymer.
When the tip drops into an indentation, the resistor is cooled by the resulting better heat transport, and a measurable change in resistance occurs.
Overwriting Data
To over-write data, the tip makes a series of offset pits that overlap so closely their edges fill in the old pits, effectively erasing the unwanted data.
The write or overwrite cycles are limited to 1,00,000 cycles.
Stored bits
Fig. shows that more than 80 percent of the 1,024 cantilevers of an experimental setup were able to write data (12 storage areas at right).
Stored bits
The close-ups (center) present 40 nm (nanometers) wide indentations at a "pitch" (distance between centers of neighboring indentations) of 120 nm (left) and 40 nm (right), pitch. 
The latter leading to areal density of ca. 400 GB per square inch. The same magnification factor has been applied to the image at the bottom, which demonstrates the potential for Terabit-per-square-inch density with 10-nm-diameter marks at a 20-nm
What is a Cantilever ?
The core components of probe storage system are a two-dimensional array of silicon probes (cantilevers) and a micro-mechanical scanner which moves the storage medium relative to the array.
For the device to perform its reading, writing and erasing functions, the cantilever tips are brought into contact with the storage medium — a thin film of a custom designed cross-linked polymer coated on a silicon substrate, which is moved in the x- and y-directions. The storage medium is positioned with nanometer-scale accuracy relative to the cantilever array.
How Cantilevers are manufactured ?
Our most recent array design consists of an array of 64 × 64 cantilevers (4096) on a 100 µm pitch.
The 6.4 × 6.4 mm² array is fabricated on a 10 × 10 mm² silicon chip using a newly developed "transfer and join" technology that allows the direct interconnection of the cantilevers with CMOS electronics .
With this technology the cantilevers and CMOS electronics are fabricated on two separate wafers, allowing the processes used in the fabrication to be independently optimized.
Using a few additional processes steps, the cantilevers are transferred onto the CMOS wafer, using a soldering process that provides a mechanical and electrical interconnect to the CMOS wafer.
About used Cantilevers
The cantilevers used in the array are of a three-terminal design, with separate heaters for reading and writing, and a capacitive platform for electrostatic actuation of the cantilevers in the z-direction.
The cantilevers are approximately 70 µm long, with a 500-700 nm long tip integrated directly above the write heater. The apex of each tip has a radius on the scale of a few nanometers allowing data to be written at extremely high densities (greater than 1 Tb/in²).
 About Microscanner
Movement of the storage medium relative to the cantilever array is achieved using a silicon-based x/y microscanner.
The scanner consists of a 6.8 × 6.8 mm² scan table, which carries the polymer medium, and a pair of electromagnetic actuators. Both the scan table and the actuators are supported by silicon springs that are 10–12 µm wide and approximately 400 µm thick. The scan table, spring system, and actuator frames are fabricated on a silicon wafer using a deep trench etching process.
The scanner chip is mounted on a silicon base plate, which acts as the mechanical ground of the system and provides a clearance of approximately 20 µm between its top surface and the bottom surface of the moving parts of the scanner.
The scan table can be displaced approximately 120 µm in two orthogonal directions (x and y) using the two electromagnetic actuators. Each actuator consists of a pair of permanent magnets mounted in a silicon frame, with a miniature coil mounted between them on the base plate.
The actuator motion is coupled to the scan table using a pivot and a mass-balancing scheme, which makes the system robust against external vibrations and shock.
A Microscanner.
Position sensing

Positioning information for the closed-loop operation of the scanner is provided by two pairs of thermal position sensors. These sensors are fabricated on the cantilever-array chip and positioned directly above the scan table. The sensors consist of thermally isolated, resistive strip heaters made of moderately doped silicon. Each sensor is positioned above an edge of the scan table and heated by applying a current. A fraction of this heat is conducted through the ambient air into the scan table, which acts as a heat sink. Displacement of the scan table gives rise to a change in the efficiency of this cooling mechanism, resulting in a change in the temperature of the heater and thus a change in its electrical resistance. These sensors provide an effectively linear position signal over the entire 120 µm range of the scanner, with a resolution of less than 2 nm in a 10 kHz bandwidth.
Position Sensor Fig.1
Position Sensor Fig.2
Recording technology
In addition to exploring novel methods for writing, reading and erasing data in thermomechanical probe recording, research is pursued in the areas of coding, signal processing and read channel design. In this context, it has been determined that a limiting factor in the areal density that can potentially be reached in thermomechanical probe storage is the intrinsic nonlinear interaction between closely packed indentations.
Upon this realization, the storage capacity can be increased by applying (d, k)-constrained codes, similar to the ones used in optical disc recording. The d-constraint in particular is instrumental in limiting the interference between successive indentations as well as in increasing the effective areal density of the storage device.
Recording
Continuous advancements on probe-tip fabrication, storage medium design, and improvements on the writing process and on the read channel design has lead to the repeated realization of storage of large amounts of data at densities higher than 1.0 Tb/in² and reliable retrieval of the data at raw error rates better than 1E-4. At these error-rate levels, conventional error-correcting codes (ECC) can successfully correct all errors, & there will be no loss of user data.
Usage Scenarios
Micro Drives

Millipede systems can be used for micro drives, which will feature very small form factor, enabling use in small footprint devices like watches, mobile phones and personal media systems, and at the same time provide high capacity. The very high data density of millipede systems makes them a very good candidate to be put to this use.
High-capacity hard drives
The Millipede system provides high data density, low seek times, low power consumption and, probably, high reliability. These features make them candidates for building high capacity hard drives, with storage capacity in the range of terabytes. Although the data density of a Millipede is high, the capacity of an individual device is expected to be relatively low -- on the order of single gigabytes.
Modern disk Storage
IBM 350
The IBM 350 was part of the IBM RAMAC 305, the computer that introduced disk storage technology to the world. IBM introduced the IBM 350 storage unit on September, 1956 before unveiling the entire RAMAC 305 computer nine days later on September. RAMAC stood for "Random Access Method of Accounting and Control."
Modern disk Storage
IBM 353
The IBM 353 used on the IBM 7030, was similar to the IBM 1302, but with a faster transfer rate. It had a capacity of 2,097,152 (221) 72-bit words (64 data bits and 8 ECC bits) and transferred 125,000 words per second.
Modern disk Storage
IBM 2310
The IBM 2310 Removable Cartridge Drive was introduced with the IBM 1130 in 1965. It could store 512,000 words (1,024,000 bytes) on an IBM 2315 cartridge. A single 14-inch (360 mm) oxide-coated aluminum disk spun in a plastic shell with openings for the read/write arm and two heads
Current state of the art
The progress of millipede storage to a commercially useful product has been slower than expected. Huge advances in other competing storage systems, notably Flash and hard drives, has made the existing demonstrators unattractive for commercial production.
Millipede appears to be in a race, attempting to mature quickly enough at a given technology level that it has not been surpassed by newer generations of the existing technologies by the time it is ready for production.
Current state of the art
The earliest generation millipede devices used probes 10 nanometers in diameter and 70 nanometers in length, producing pits about 40 nm in diameter on fields 92 µm x 92 µm. Arranged in a 32 x 32 grid, the resulting 3 mm x 3 mm chip stores 500 megabits of data or 62.5 MB, resulting in an areal density, the number of bits per square inch, on the order of 200 Gbit/in². IBM initially demonstrated this device in 2003, planning to introduce it commercially in 2005. By that point hard drives were approaching 150 Gbit/in², and have since surpassed it.
Conclusion
Today there are no known emerging markets for nanotechnology where high density storage devices.
The HDD industry meating
Reply
#10

to get information about the topic holographic data storage full report full report,ppt and related topic please refer the page link bellow

http://studentbank.in/report-holographic...ort?page=2

http://studentbank.in/report-holographic...ort?page=3

http://studentbank.in/report-millipede-d...ull-report

http://studentbank.in/report-holographic...ars-report

http://seminarsprojects.in/showthread.ph...8#pid63128

http://studentbank.in/report-holographic...ull-report

http://seminarsprojects.in/attachment.php?aid=7720

http://studentbank.in/report-holographic-memory--5493
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: millipede memory technology ppt, afm artifacts**of human resource management by c b gupta, millipede gamemillipedes, millipede pdf, longterm, afm enterprises**ort of ppt civil engineer, millipede body parts,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  network attached storage computer science crazy 3 12,456 20-02-2019, 01:16 PM
Last Post:
  computer networks full report seminar topics 8 42,026 06-10-2018, 12:35 PM
Last Post: jntuworldforum
  OBJECT TRACKING AND DETECTION full report project topics 9 30,658 06-10-2018, 12:20 PM
Last Post: jntuworldforum
  Block Chain and Data Science jntuworldforum 0 7,962 06-10-2018, 12:15 PM
Last Post: jntuworldforum
  imouse full report computer science technology 3 24,900 17-06-2016, 12:16 PM
Last Post: ashwiniashok
  Implementation of RSA Algorithm Using Client-Server full report seminar topics 6 26,614 10-05-2016, 12:21 PM
Last Post: dhanabhagya
  Optical Computer Full Seminar Report Download computer science crazy 46 66,346 29-04-2016, 09:16 AM
Last Post: dhanabhagya
  ethical hacking full report computer science technology 41 74,445 18-03-2016, 04:51 PM
Last Post: seminar report asees
  broadband mobile full report project topics 7 23,324 27-02-2016, 12:32 PM
Last Post: Prupleannuani
  Data Encryption Standard (DES) seminar class 2 9,334 20-02-2016, 01:59 PM
Last Post: seminar report asees

Forum Jump: