microcontrollers
#1

[attachment=11212]
ABSTRACT
A microcontroller is sometimes described as a "computer on a chip" because it contains all the features of a full computer including central processor, in-built clock circuitry, ROM, RAM, input and output ports with special features such as serial communication, analogue-to-digital conversion and, more recently, signal processing.
The smallest microcontroller has only eight pins but some having 68 pins are also being marketed. In the last five years, the prices of microcontrollers have dropped by 80% and are now one of the most cost-effective components in industry. Being software-driven, microcontrollers greatly simplify the design of sophisticated instrumentation and control circuitry.
The microcontrollers are able to effect precise calculations sometimes needed for feedback in control systems and now form the basis of all intelligent embedded systems such as those required in television and VCR remote controls, microwave ovens, washing machines, etc. More than ten times as many microcontrollers than microprocessors are manufactured and sold in the world in spite of the high profile that the latter enjoys because of the personal computer market.
In Zimbabwe, extensive research is being carried out to use microcontrollers to aid the cost recovery of domestic and commercial solar installations as part of the rural electrification programme, and now a day’s microcontroller low cost and readily available for the hobbyists.
INTRODUCTION
A microcontroller (also MCU or µC) is a computer-on-a-chip. It is a type of microprocessor emphasizing high integration, low power consumption, self-sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor (the kind used in a PC). In addition to the usual arithmetic and logic elements of a general purpose microprocessor, the microcontroller typically integrates additional elements such as read-write memory for data storage, read-only memory, such as flash for code storage, EEPROM for permanent data storage, peripheral devices, and input/output interfaces. At clock speeds of as little as a few MHz or even lower, microcontrollers often operate at very low speed compared to modern day microprocessors, but this is adequate for typical applications. They consume relatively little power (milliwatts), and will generally have the ability to sleep while waiting for an interesting peripheral event such as a button press to wake them up again to do something. Power consumption while sleeping may be just nanowatts, making them ideal for low power and long lasting battery applications.
Microcontrollers are frequently used in automatically controlled products and devices, such as automobile engine control systems, remote controls, office machines, appliances, power tools, and toys. By reducing the size, cost, and power consumption compared to a design using a separate microprocessor, memory, and input/output devices, microcontrollers make it economical to electronically control many more processes.
The integrated circuit from an Intel 8742, an 8-bit microcontroller that includes a CPU running at 12 MHz, 128 bytes of RAM, 2048 bytes of EPROM, and I/O in the same chip.
1.1 Definition
A microcontroller (also MCU or µC) is a computer-on-a-chip. It is a type of microprocessor emphasizing high integration, low power consumption, self-sufficiency and cost-effectiveness,
2.1 Embedded design
The majority of computer systems in use today are embedded in other machinery, such as telephones, clocks, appliances, and vehicles. An embedded system may have minimal requirements for memory and program length. Input and output devices may be discrete switches, relays, or solenoids. An embedded controller may lack any human-readable interface devices at all. For example, embedded systems usually don't have keyboards, screens, disks, printers, or other recognizable I/O devices of a personal computer. Microcontrollers may control electric motors, relays or voltages, and may read switches, variable resistors or other electronic devices.
2.1.1 Embedded systems
A router, an example of an embedded system. Labelled parts include a microprocessor (4), RAM (6), and flash memory (7).
An embedded system is a special-purpose computer system designed to perform one or a few dedicated functions[1], often with real-time computing constraints. It is usually embedded as part of a complete device including hardware and mechanical parts. In contrast, a general-purpose computer, such as a personal computer, can do many different tasks depending on programming. Embedded systems have become very important today as they control many of the common devices we use.
Since the embedded system is dedicated to specific tasks, design engineers can optimize it, reducing the size and cost of the product, or increasing the reliability and performance. Some embedded systems are mass-produced, benefiting from economies of scale.
Physically, embedded systems range from portable devices such as digital watches and MP3 players, to large stationary installations like traffic lights, factory controllers, or the systems controlling nuclear power plants. Complexity varies from low, with a single microcontroller chip, to very high with multiple units, peripherals and networks mounted inside a large chassis or enclosure.
In general, "embedded system" is not an exactly defined term, as many systems have some element of programmability. For example, Handheld computers share some elements with embedded systems — such as the operating systems and microprocessors which power them — but are not truly embedded systems, because they allow different applications to be loaded and peripherals to be connected.
2.1.2Microprocessor
A microprocessor incorporates most or all of the functions of a central processing unit (CPU) on a single integrated circuit (IC). [1] The first microprocessors emerged in the early 1970s and were used for electronic calculators, using BCD arithmetics on 4-bit words. Other embedded uses of 4 and 8-bit microprocessors, such as terminals, printers, various kinds of automation etc, followed rather quickly. Affordable 8-bit microprocessors with 16-bit addressing also led to the first general purpose microcomputers in the mid-1970s.
Processors were for a long period constructed out of small and medium-scale ICs containing the equivalent of a few to a few hundred transistors. The integration of the whole CPU onto a single VLSI chip therefore greatly reduced the cost of processing capacity. From their humble beginnings, continued increases in microprocessor capacity has rendered other forms of computers almost completely obsolete (see history of computing hardware), with one or more microprocessor as processing element in everything from the smallest embedded systems and handheld devices to the largest mainframes and super computers.
Since the early 1970s, the increase in processing capacity of evolving microprocessors has been known to generally follow Moore's Law. It suggests that the complexity of an integrated circuit, with respect to minimum component cost, doubles every 18 months. In the late 1990s, heat generation (TDP), due to current leakage and other factors, emerged as a leading developmental constraint
2.1.3 Random access memory
Example of writable but volatile random access memory: Synchronous Dynamic RAM modules, primarily used as main memory in personal computers, workstations, and servers.
Random access memory (usually known by its acronym, RAM) is a type of computer data storage. Today it takes the form of integrated circuits that allow the stored data to be accessed in any order, i.e. at random. The word random thus refers to the fact that any piece of data can be returned in a constant time, regardless of its physical location and whether or not it is related to the previous piece of data.
This contrasts with storage mechanisms such as tapes, magnetic discs and optical discs, which rely on the physical movement of the recording medium or a reading head. In these devices, the movement takes longer than the data transfer, and the retrieval time varies depending on the physical location of the next item.
The word RAM is mostly associated with volatile types of memory (such as DRAM memory modules), where the information is lost after the power is switched off. However, many other types of memory are RAM as well (i.e. Random Access Memory), including most types of ROM and a kind of flash memory called NOR-Flash
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: how to make comparison of microcontrollers, microcontrollers used in avionics, microcontrollers projects, topics for seminar on microcontrollers, embedded microcontrollers by morton, microcontrollers, microcontrollers circuits,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Forum Jump: