matlab code for superheterodyne am receiver
#1

Matlab code for superhetrodyne am receiver
Reply
#2

Having looked at the concepts behind the superheterodyne receiver it is helpful to look at a block diagram of a basic superhet. The superheterodyne block diagram is relatively straightforward and builds on the basic functional block used to convert the incoming frequency down to a fixed intermediate frequency stage.

While there may be some simplified versions for a superheterodyne block diagram, each receiver will be different as a result of the differing requirements for each receiver. However the basic principles are the same, and many superheterodyne block diagrams are very similar.

The way in which the receiver works can be seen by following the signal as is passes through the receiver.

Front end amplifier and tuning block: Signals enter the front end circuitry from the antenna. This circuit block performs two main functions:

Tuning: Broadband tuning is applied to the RF stage. The purpose of this is to reject the signals on the image frequency and accept those on the wanted frequency. It must also be able to track the local oscillator so that as the receiver is tuned, so the RF tuning remains on the required frequency. Typically the selectivity provided at this stage is not high. Its main purpose is to reject signals on the image frequency which is at a frequency equal to twice that of the IF away from the wanted frequency. As the tuning within this block provides all the rejection for the image response, it must be at a sufficiently sharp to reduce the image to an acceptable level. However the RF tuning may also help in preventing strong off-channel signals from entering the receiver and overloading elements of the receiver, in particular the mixer or possibly even the RF amplifier.
Amplification: In terms of amplification, the level is carefully chosen so that it does not overload the mixer when strong signals are present, but enables the signals to be amplified sufficiently to ensure a good signal to noise ratio is achieved. The amplifier must also be a low noise design. Any noise introduced in this block will be amplified later in the receiver.
Mixer / frequency translator block: The tuned and amplified signal then enters one port of the mixer. The local oscillator signal enters the other port. The performance of the mixer is crucial to many elements of the overall receiver performance. It should eb as linear as possible. If not, then spurious signals will be generated and these may appear as 'phantom' received signals.
Local oscillator: The local oscillator may consist of a variable frequency oscillator that can be tuned by altering the setting on a variable capacitor. Alternatively it may be a frequency synthesizer that will enable greater levels of stability and setting accuracy.
Intermediate frequency amplifier, IF block : Once the signals leave the mixer they enter the IF stages. These stages contain most of the amplification in the receiver as well as the filtering that enables signals on one frequency to be separated from those on the next. Filters may consist simply of LC tuned transformers providing inter-stage coupling, or they may be much higher performance ceramic or even crystal filters, dependent upon what is required.
Detector / demodulator stage: Once the signals have passed through the IF stages of the superheterodyne receiver, they need to be demodulated. Different demodulators are required for different types of transmission, and as a result some receivers may have a variety of demodulators that can be switched in to accommodate the different types of transmission that are to be encountered. Different demodulators used may include:

AM diode detector: This is the most basic form of detector and this circuit block would simple consist of a diode and possibly a small capacitor to remove any remaining RF. The detector is cheap and its performance is adequate, requiring a sufficient voltage to overcome the diode forward drop. It is also not particularly linear, and finally it is subject to the effects of selective fading that can be apparent, especially on the HF bands.
Synchronous AM detector: This form of AM detector block is used in where improved performance is needed. It mixes the incoming AM signal with another on the same frequency as the carrier. This second signal can be developed by passing the whole signal through a squaring amplifier. The advantages of the synchronous AM detector are that it provides a far more linear demodulation performance and it is far less subject to the problems of selective fading.
SSB product detector: The SSB product detector block consists of a mixer and a local oscillator, often termed a beat frequency oscillator, BFO or carrier insertion oscillator, CIO. This form of detector is used for Morse code transmissions where the BFO is used to create an audible tone in line with the on-off keying of the transmitted carrier. Without this the carrier without modulation is difficult to detect. For SSB, the CIO re-inserts the carrier to make the modulation comprehensible.
Basic FM detector: As an FM signal carries no amplitude variations a demodulator block that senses frequency variations is required. It should also be insensitive to amplitude variations as these could add extra noise. Simple FM detectors such as the Foster Seeley or ratio detectors can be made from discrete components although they do require the use of transformers.
PLL FM detector: A phase locked loop can be used to make a very good FM demodulator. The incoming FM signal can be fed into the reference input, and the VCO drive voltage used to provide the detected audio output.
Quadrature FM detector: This form of FM detector block is widely used within ICs. IT is simple to implement and provides a good linear output.
Audio amplifier: The output from the demodulator is the recovered audio. This is passed into the audio stages where they are amplified and presented to the headphones or loudspeaker
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: seminar report on superheterodyne receiver, superheterodyne receiver for mobile communication mini project, project report on superheterodyne receiver, verilog code for ir receiver free downloadvbulletin, cio as, seminar report on fm superheterodyne receiver, working of superheterodyne receiver animation,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  image encryption and decryption using rsa algorithm in matlab 2 7,913 29-05-2017, 04:17 PM
Last Post: Priyanka Bidikar
  download liver tumor ct scan image in matlab with source code 4 8,069 21-05-2017, 09:54 PM
Last Post: abdulrahmanmashaal
  MATLAB codes needed for powerline communication 1 8,080 12-04-2017, 05:00 PM
Last Post: jaseela123d
  matlab code for wavelet based ofdm transmitter 1 923 24-02-2017, 11:18 AM
Last Post: ijasti
  code to extract brain tumor detection using matlab 2 1,067 17-10-2016, 04:32 PM
Last Post: girish123ak
  f5 algorithm steganography matlab code 2 871 04-10-2016, 03:00 AM
Last Post: [email protected]
  color image segmentation using jseg algorithm in matlab code 2 867 29-09-2016, 12:07 PM
Last Post: Guest
  matlab code for retinal hemorrhage detection in fundus images 2 857 24-08-2016, 01:10 AM
Last Post: [email protected]
  matlab code of directional filter bank 1 856 13-08-2016, 11:27 AM
Last Post: jaseela123d
  matlab xy routing algorithm 2 830 12-08-2016, 09:16 PM
Last Post: khant

Forum Jump: