Loop magnetic couplers
#1

Introduction

Couplers, also known as "isolators" because they electrically isolate as well as transmit data, are widely used in industrial and factory networks, instruments, and telecommunications. Every one knows the problems with optocouplers. They take up a lot of space, are slow, optocouplers age and their temperature range is quite limited. For years, optical couplers were the only option. Over the years, most of the components used to build instrumentation circuits have become ever smaller. Optocoupler technology, however, hasn't kept up. Existing coupler technologies look like dinosaurs on modern circuit boards.

Magnetic couplers are analogous to optocouplers in a number of ways. Design engineers, especially in instrumentation technology, will welcome a galvanically-isolated data coupler with integrated signal conversion in a single IC. My report will give a detailed study about 'ISOLOOP MAGNETIC COUPLERS'. GROUND LOOPS
When equipment using different power supplies is tied together (with a common ground connection) there is a potential for ground loop currents to exist. This is an induced current in the common ground line as a result of a difference in ground potentials at each piece of equipment.

Normally all grounds are not in the same potential. Widespread electrical and communications networks often have nodes with different ground domains. The potential difference between these grounds can be AC or DC, and can contain various noise components. Grounds connected by cable shielding or logic line ground can create a ground loop-unwanted current flow in the cable. Ground-loop currents can degrade data signals, produce excessive EMI, damage components, and, if the current is large enough, present a shock hazard.

Galvanic isolation between circuits or nodes in different ground domains eliminates these problems, seamlessly passing signal information while isolating ground potential differences and common-mode transients. Adding isolation components to a circuit or network is considered good design practice and is often mandated by industry standards. Isolation is frequently used in modems, LAN and industrial network interfaces (e.g., network hubs, routers, and switches), telephones, printers, fax machines, and switched-mode power supplies.

Giant Magnetoresistive (GMR):

Large magnetic field dependent changes in resistance are possible in thin film ferromagnet/nonmagnetic metallic multilayers. The phenomenon was first observed in France in 1988, when changes in resistance with magnetic field of up to 70% were seen. Compared to the small percent change in resistance observed in anisotropic magnetoresistance, this phenomenon was truly 'giant' magnetoresistance.

The spin of electrons in a magnet is aligned to produce a magnetic moment. Magnetic layers with opposing spins (magnetic moments) impede the progress of the electrons (higher scattering) through a sandwiched conductive layer. This arrangement causes the conductor to have a higher resistance to current flow.

An external magnetic field can realign all of the layers into a single magnetic moment. When this happens, electron flow will be less effected (lower scattering) by the uniform spins of the adjacent ferromagnetic layers. This causes the conduction layer to have a lower resistance to current flow. Note that these phenomenon takes places only when the conduction layer is thin enough (less than 5 nm) for the ferromagnetic layer's electron spins to affect the conductive layer's electron's path.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: couplers for dogs, trailer couplers bulldog temperature applications ppt, trailer couplers bulldog, iiso loop magnetic coupler, loop diathermy, bams school loop, ieee pdf on iso loop magnetic coupler,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  Underground Wireless Communication using Magnetic Induction Wifi 1 3,349 07-11-2012, 02:02 PM
Last Post: seminar details
  Wireless Energy Transfer using Magnetic Resonance computer science topics 3 4,039 06-02-2012, 11:09 AM
Last Post: seminar addict
  Magnetic RAM computer science crazy 1 1,658 06-02-2012, 10:28 AM
Last Post: seminar addict
  Wireless Local Loop (WLL) seminar surveyer 2 3,466 21-04-2011, 12:24 PM
Last Post: seminar class
  Zero power magnetic levitation using composite of magnetostrictive - piezoelectric ma seminar class 0 1,145 02-03-2011, 03:34 PM
Last Post: seminar class
  GMSK DEMODULATOR USING COSTAS LOOP FOR SOFTWARE-DEFINED RADIO seminar surveyer 0 1,632 13-01-2011, 02:34 PM
Last Post: seminar surveyer
  MAGNETIC EYE TRACKING USING PLANAR TRANSMITTER seminar surveyer 0 1,295 30-12-2010, 04:38 PM
Last Post: seminar surveyer
  NONLINEAR DYNAMICAL FEEDBACK FOR MOTION CONTROL OF MAGNETIC LEVITATION SYSTEM seminarsense 0 1,154 16-11-2010, 09:36 PM
Last Post: seminarsense
  Magnetic sensors and logic gates project report helper 0 1,155 26-10-2010, 04:22 PM
Last Post: project report helper
  MAGNETIC RESONANCE IMAGING SIMULATION ON A GRID COMPUTING ARCHITECTURE full report computer science topics 0 1,695 16-06-2010, 09:17 PM
Last Post: computer science topics

Forum Jump: