Loop magnetic couplers
#1

Introduction

Couplers, also known as "isolators" because they electrically isolate as well as transmit data, are widely used in industrial and factory networks, instruments, and telecommunications. Every one knows the problems with optocouplers. They take up a lot of space, are slow, optocouplers age and their temperature range is quite limited. For years, optical couplers were the only option. Over the years, most of the components used to build instrumentation circuits have become ever smaller. Optocoupler technology, however, hasn't kept up. Existing coupler technologies look like dinosaurs on modern circuit boards.

Magnetic couplers are analogous to optocouplers in a number of ways. Design engineers, especially in instrumentation technology, will welcome a galvanically-isolated data coupler with integrated signal conversion in a single IC. My report will give a detailed study about 'ISOLOOP MAGNETIC COUPLERS'. GROUND LOOPS
When equipment using different power supplies is tied together (with a common ground connection) there is a potential for ground loop currents to exist. This is an induced current in the common ground line as a result of a difference in ground potentials at each piece of equipment.

Normally all grounds are not in the same potential. Widespread electrical and communications networks often have nodes with different ground domains. The potential difference between these grounds can be AC or DC, and can contain various noise components. Grounds connected by cable shielding or logic line ground can create a ground loop-unwanted current flow in the cable. Ground-loop currents can degrade data signals, produce excessive EMI, damage components, and, if the current is large enough, present a shock hazard.

Galvanic isolation between circuits or nodes in different ground domains eliminates these problems, seamlessly passing signal information while isolating ground potential differences and common-mode transients. Adding isolation components to a circuit or network is considered good design practice and is often mandated by industry standards. Isolation is frequently used in modems, LAN and industrial network interfaces (e.g., network hubs, routers, and switches), telephones, printers, fax machines, and switched-mode power supplies.

Giant Magnetoresistive (GMR):
Large magnetic field dependent changes in resistance are possible in thin film ferromagnet/nonmagnetic metallic multilayers. The phenomenon was first observed in France in 1988, when changes in resistance with magnetic field of up to 70% were seen. Compared to the small percent change in resistance observed in anisotropic magnetoresistance, this phenomenon was truly 'giant' magnetoresistance.

The spin of electrons in a magnet is aligned to produce a magnetic moment. Magnetic layers with opposing spins (magnetic moments) impede the progress of the electrons (higher scattering) through a sandwiched conductive layer. This arrangement causes the conductor to have a higher resistance to current flow.

An external magnetic field can realign all of the layers into a single magnetic moment. When this happens, electron flow will be less effected (lower scattering) by the uniform spins of the adjacent ferromagnetic layers. This causes the conduction layer to have a lower resistance to current flow. Note that these phenomenon takes places only when the conduction layer is thin enough (less than 5 nm) for the ferromagnetic layer's electron spins to affect the conductive layer's electron's path.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: magnetic flowmeter, wireless local loop abstract in doc, pdf on fiber couplers connectors notes according to 7sem vtu, couplers for dogs, magnetic catalysis, isoloop magnetic couplers seminar report wikipedia, ethernet cable couplers adapters,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  Maglev- Magnetic Levitation Vehicle computer girl 1 1,152 07-01-2013, 01:28 PM
Last Post: seminar details
  cordect wireless in local loop system electrical engineering 1 2,342 27-12-2012, 12:48 PM
Last Post: seminar details
  Open loop control vs. closed loop (feedback) control computer girl 0 1,438 09-06-2012, 10:35 AM
Last Post: computer girl
  MAGNETIC LEVITATION VEHICLES computer girl 0 942 08-06-2012, 03:07 PM
Last Post: computer girl
  Closed loop timing computer girl 0 769 06-06-2012, 11:50 AM
Last Post: computer girl
  Magnetic Levitation full report project topics 5 11,053 05-03-2012, 09:46 AM
Last Post: seminar paper
  Power Frequency Magnetic Fields computer science crazy 2 3,479 31-10-2011, 09:24 AM
Last Post: seminar addict
  effect of tower displacement of two parallel transmission lines on magnetic field seminarsense 0 1,402 01-12-2010, 11:52 AM
Last Post: seminarsense
  Improved Controller for High Temperature Super Conducting Magnetic Energy Storage (HT project report helper 0 1,120 22-10-2010, 05:37 PM
Last Post: project report helper
  Fault Location for Power Transmission Systems Using Magnetic Field Sensing Coils project report helper 0 1,770 08-10-2010, 12:08 PM
Last Post: project report helper

Forum Jump: