Landmine detection using impulse ground penetrating radar
#1

[attachment=994]
ABSTRACT
Landmines are affecting the lives and livelihood of millions of people around the world. The video impulse ground penetrating radar system for detection for small and shallow buried objects has been developed. The hardware combines commercially available components with components specially developed or modified for being used in the system. The GPR system has been desired to measure accurately electromagnetic field backscattered from subsurface targets in order to allow identification of detected targets through the solution of the inverse scattering problem. The GPR has been tested in different environmental conditions and has proved its ability to detect small and shallow buried targets.
INTRODUCTION
Landmines and unexploded ordnance (UXO) are a legacy of war, insurrection, and guerilla activity. Landmines kill and maim approximately 26,000 people annually. In Cambodia, whole areas of arable land cannot be farmed due to the threat of landmines. United Na-tions relief operations are made more difficult and dangerous due to the mining of roads. Current demining techniques are heavily reliant on metal detectors and prodders.

Technologies are used for landmine detection are:

a. Metal detectors--- capable of finding even low-metal content mines in mineralized soils.
b. Nuclear magnetic resonance, fast neutron activation and thermal neutron activation.
c. Thermal imaging and electro-optical sensors--- detect evidence of buried objects.
d. Biological sensors such as dogs, pigs, bees and birds.
e. Chemical sensors such as thermal fluorescence--- detect airborne and waterborne presence of explosive vapors.

. In this discussion, we will concentrate on Ground Penetrating Radar (GPR). This ultra wide band radar provides centimeter resolution to locate even small targets. There are two distinct types of GPR, time-domain and frequency domain. Time domain or impulse GPR transmites discrete pulses of nanosecond duration and digitizes the returns at GHz sample rates. Frequency domain GPR systems transmit single frequencies either uniquely, as a series of frequency steps, or as a chirp. The amplitude and phase of the return signal is measured. The resulting data is converted to the time domain. GPR operates by detecting the dielectric contrasts in the soils, which allows it to locate even non metallic mines
In this discussion we deal with buried anti-tank (AT) and anti-personnel (AP) landmines which require close approach or contact to activate. AT mines range from about 15 to 35 cm in size. They are typically buried up to 40cm deep, but they can also be deployed on the surface of a road to block a column of machinery. AP mines range from about 5 to 15cm in size. AT mines which are designed to impede the progress of destroy vehicles and AP mines which are designed to kill and maim people.

HARDWARE DESCRIPTION

The impulse GPR system developed in the International Research Centre for Telecommunications-transmission and Radar (IRCTR). Impulse GPR system comprises a Impulse generator, Transmitter, Receiver, Pulse extender, A/D converter, Processor and Visual display.

IMPULSE GENERATOR

The pulse generator delivered by SATIS Co. produces 0.8 ns monocycle pulses. The unique feature of this generator is its small trailing oscillations, which are below 2.4% of maximum amplitude during the first 2 ns and below 0.5% afterwards. The advantage of a monocycle in comparison with a mono pulse is that the frequency spectrum of the first one decreases to zero at low frequencies, which cannot be efficiently transmitted via the antenna system, while the frequency spectrum of the second one has a global maximum there. As a result, the magnitude of the field radiated by an antenna system fed by a monocycle is considerably larger than the magnitude of the field radiated by the antenna system fed by a monopulse with the same magnitude.

The generator spectrum covers a wide frequency band from 500MHz till 2GHz on 3dB level. At frequencies below 1GHz, attenuation losses in the ground are small and considerable penetration depth can be achieved. However, landmines detection requires down-range resolution of the order of several centimeters, which can be achieved using frequencies above 1GHz. It was found experimentally that the 0.8ns monocycle satisfies penetration and resolution requirements. This output signal from 0.8ns generator is shown in figure. The spectrum of this pulse has a maximum at frequencies where the attenuation losses in the ground start to increase. So the spectral content of the monocycle below this maximum penetrates deep into the ground and the spectral content above this maximum provides sufficient down-range resolution.
ANTENNA SYSTEM

The antenna system is one of the most critical parts of GPR system, because its performance depends strongly on the antenna system. The antenna system should satisfy a number of demands. The antenna system contains transmitter and receiver. The transmit antenna should:
Radiate short ultra-wide band (UWB) pulse with small ringing.
Radiate electro magnetic energy within a narrow cone in order to filter out undesirable back scattering from surrounding objects.
Produce an optimal footprint on the ground surface and below it.
The waveform of the radiated field on the surface and in the ground should be the same.
The waveform of the radiated field in the ground should not depend on type of the ground.


The receiver antenna should:

Allow time windowing to isolate the direct air wave from the ground reflection.
Provide sufficient sensitivity in order to receive very weak fields.
Receive the field in a local point; effective aperture should not be larger than 1cm2.
Be elevated at least 10cm above the ground surface.
Additionally a possibility to measure simultaneously backscattered field in two orthogonal polarizations is desirable.
PULSE EXTENDER

Pulse extender will amplify the ground reflection signal up to the maximum level acquired by A/D converter.
A/D CONVERTER

The transmitter sends out a series of electromagnetic pulses then listens with the receiver connected to high speed sampler which in turn feeds A/D Converter. A dielectric anomaly in the soil may cause the signal to be reflected back to a separate receiver antenna. This information is converted from nanoseconds to milliseconds so that it may be digitized by a conventional A/D converter for processing and display. The center frequency and band width of the transmitted pulse can be varied by changing the antenna and are chosen with respect to the required depth of penetration, soil type and size of the object to be detected. In this experiment, we used antennas with a center frequency 1.4GHz and 80% band width. The precision of sampling converter is sufficiently high to do accurate measurements of scattered transient field. This A/D converter 12 bit accuracy. This provides 66 dB linear dynamic ranges. A/D converter converts the signal into digital signal which passes to the processor.
PROCESSOR
A/D converter converts the signal into digital signal which passes to the processor. Processor filters the signal. This signal shows presence or absence of surrogate mine in the soil. Processor allows passing the presence of mine detecting signal. Processor selects the mine detecting signal and passes to the visual display.
VISUAL DISPLAY
Visual display helps to see the range of targets. It displays the exact position of landmine.
SENSORS EMPLOYED


If all mines were cased or had substantial metallic content, all that would be required for detection are metal detectors. The widespread use of plastic landmines necessitates development and deployment of additional detection technologies. Because there is no such thing as a plastic detector, other sensors attempt to exploit ancillary disturbances in the background, such as thermal, chemical, or dielectric.
GROUND PENETRATING RADAR

Because of the difficulty detecting the tiny amounts of metal in a plastic landmine with a metal detector, technology development has been funded in other areas. Ground penetrating radar (GPR) has been used for nearly 70 years for a variety of geophysical subsurface imaging applications including utility mapping and hazardous waste container location and has been actively applied to the problem of landmine detection for nearly 20 years. When parameters such as frequency range, antenna size, antenna separation, and system timing are optimized for detection of mine-sized objects in the near subsurface, GPR is quite effective in detecting both metal and plastic landmines in a variety of soils. The depth of penetration is a function of both the frequency range produced and the soil attenuation. Lower frequency components penetrate further, but it is a higher-frequency component that is necessary to image and resolve smaller targets. Both impulse- based and swept frequency GPR systems have been employed in Army-sponsored research programs. Generally a system with a bandwidth of roughly 1 to 4GHz is effective for detection of landmines.
Ultimately, GPR images the dielectric properties of the soils, and any discontinuities appear as a signal. If soil were perfectly homogeneous, a discontinuity caused by a land mine would stand out as an anomaly against the background. Unfortunately, even under near-ideal test track conditions, soil itself is a remarkably inhomogeneous medium, and false alarms are easily generated from the background itself .
Because of this, automatic target recognition (ATR) algorithms employed by impulse-based GPR systems typically calculate and remove background and try to detect the hyperbolic signatures that are characteristic in size and shape of landmine targets in GEO-CENTERS 400 Series energy in focusing ground penetrating radar (EFGPR), we employ a fuzzy logic-based algorithm that use prototypes, or feature sets, for landmines, and prototypes than to clutter. At each location in a data set, we look inside a neighborhood of adjacent points, extract a feature set, and calculate if the features set is closer to the mine prototypes .The output is a plan view of the confidence, at each point along a test lane, that there is a lade mine .A blob detector then runs on this confidence plane view, outputting target reports when a blob is of an appropriate size and shape.


Although GPR has been shown to be effective on the test track against a variety of land mines in a range of soil conditions, it is technologically complex . The weight and power requirements are not overwhelming, but they make GPR most easily deployed on a vehicular platform .Through NVESD at Fort Belvoir, the U.S Army is deploying GPR in a variety of hand held and vehicular land mine detection technology development programs .
OVERVIEW OF THE SYSTEM


A series of measurements has been taken using a set of targets buried in the various types of soil. An FR-127-MSCB impulse ground penetrating radar (ImGPR) system developed by the Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia, has been used for these measurements. The system collects 127 returns, or surroundings, per second, each composed of 512 samples with 12 bit accuracy. The sounding range may vary from 4 ns to 32ns. The GPR system uses bistatic bow-tie antennas which transmit wideband, ultrashort duration pulses.

The GPR unit is suspended above the ground surface at a height of between 0.5 to 2cm. Its motion is controlled by a stepper motor unit running along a track at a constant velocity as shown in fig.4. Since the motion of the GPR is controlled by a stepper motor, with constant speed, running on a straight track, these samples corresponds to distances from starting point of the run.

GPR images the dielectric properties of the soil and any discontinuities appear as a signal. If the soil were perfectly homogeneous a discontinuity caused by a land mine would stand out as an anomaly against the background. Automatic targets recognition (ATR) algorithms employed by impulse based GPR system.

The measurements form a two dimensional matrix, referred to as a radargram or B scan and A scan are used for visual inspection of data on the acquisition computer and in laboratory analysis.
A SCAN

Impulse GPR produces measurements of electromagnetic field scattered from the subsurface. This is detecting the graph as shown in figure.
A scan is a method for detecting the presence and absence of surrogate mine in clay soil. The electromagnetic field is scattered by the GPR. Scattering pulses are detecting by the graph. This graph is Amplitude Vs Time. This graph is helpful to find the landmine and is used for visual inspection. The normal pulses are showing the absence of mines. The amplitude of the pulses are large as compared to other area. This shows the presence of mine. So we can detect the presence of mine in that clay soil.
A scans in the presence (dashed) and absence (solid) of a surrogate
mine in clay soil.
B SCAN

A scan shows the presence of mine but we cannot expect the exact target. This problem is solving in B scan. B scan or Radargram is used to visualize the target of surrogate mine. A sample radargram is shown in figure. This showing the targets at approximately 55 cm and 100 cm. B scan calculating the distance from the soil to the mine. In this sample radargram showing the exact position.
A scan and B scan is used for laboratory analysis. A return at a certain position along the distance axis is called an A scan. B scan is a graph which is Time delay Vs Distance. So B scan helps to calculate the penetration length. This graph helps to calculate the distance from ground to the mine.

DEPLOYMENT PLATFORM


US army handheld standoff mine detection system that is a self propelled cart with GPR system. As technological development for land mine detection tends to be a vehicular based system. This vehicular based system is shown in figure. 7.

self propelled cart with GPR system

This vehicle is self propelled so it can use in war places. This is a vehicular based system because vehicle can carry the weight and supply the power. This does not mean, though, that handheld systems are limited to metal detectors. There are platforms that are smaller than full vehicles but larger than man deployable devices. This vehicle comprises a pulse generator, transmitter, receiver, pulse extender, A / D converter, processor and a visual display. This vehicle is passing through the soil, the pulse generator produces pulses and the transmitter transmits this signal to the ground. The soil contain the land mine, the receiver receives the ground reflecting signal. The A / D converter converts the signal nanoseconds to milliseconds. This signal is digital signal and this signal amplifies and filtering by the processor. The signal contains presence of land mine, passes to the visual display. This visual display helps to display the exact target of land mine. This helps to calculate the distance from the soil to the mine. This system is very useful to the war places. This vehicle is self propelled so it can make easy detection.
TESTING AND EVALUATION

The U.S Army performs objective blind and scored testing at their testing facilities, which include carefully constructed mine lines. In this testing and evaluation environment, land mines are live (filed with explosive) because certain detection technologies such as Quadrople Resonance rely on detection of the actual explosive charge. However, on this test lines, the mines are unfused and thus do not detonate if they are run over by detection system. Dirt and gravel lanes are maintained. Typically, the lanes are very smooth, largely free of bumps and ditches that would cause the sensor arrays to maintain an inconsistent sensor height that would substantially affect data quality. Off-road lanes are also used. They are not as pristine as dirt or gravel lanes but are still a substantially more controlled environment than a Jeep train through the Khyber Pass.
Each lane has an associated calibration lanes where the ground truth is known and contactors may run and rerun their system to iteratively optimize detection performance. GPR systems typically need calibration or timing alignment, and infrared cameras generally need bore sighting. The feature extraction and ATR algorithms on the individual sensor subsystems usually need to be tweaked to maximize the detection rate and minimize the false alarm rate for the particular environment. This can entail adjusting detection thresholds or determining optimum blob sizes. When acceptable performance is achieved on the calibration lane, the contractor is ready to run the blind, scored section of the lane.


ADVANTAGES

GPR has accurate measurements.
GPR locates even small targets.
It has been well founded by the defense.
GPR operates by detecting the dielectric soils which allows it to locate even no metallic mines.
Biological sensors can only operate for limited periods, but in GPR has no such limits.
GPR has been tested in different environmental conditions.
DISADVANTAGES
The sensor such as GPR is larger and heavier.
GPR is more power hungry.
GPR can suffer falls alarm rates as high as metal detectors.
CONCLUSION

Impulse GPR system is using for detecting anti-tank and anti-personal mines. Anti-tank mines are using for destroying the vehicles and anti-personal mines, which are designed to kill and maim people. Currently, very little technology is used in real-world demining activities. Active programs by the U.S Army in both land mine detection sensor development and systems integration are evaluating new technologies, incrementally improving existing technologies, increasing the probability of detection, reducing the false alarm rate, and planning out useable deployment scenarios. Through iterative design, build test cycles, and blind and scored testing at Army mine lanes, steady progress is being made.

BIBLIOGRAPHY

1. Signal processing techniques for landmine detection using impulse ground penetrating radar “ IEEE sensors journal, vol. 2, No.1, February 2002.
2. Landmine detection “ IEEE instrumentation & measurement magazine, December 2002.
3. L. Collins, P. Gao, S. Tantum, J. Moulton, L. Makowsky, D. Reidy, and R. Weaver, A comparison of statistical signal processing algorithms for detection and identification of low metal mines, presented at the UXO/Countermine Forum, Anaheim, CA, May 2000.
4. A. D. Hibb, G. A. Barrall, P. V. Czipott, D. K. Lathrop, Y. K. Lee, E. E. Magnuson, R. Matthews, and S. A. Vierkotter, Landmine detection by nuclear quadrapole resonance, in SPIE Conf. Detection Remediation Technologies Mines, Minelike Targets III, Orlando, FL, Apr. 1998
Reply
#2
display fig
display block diagram
Reply
#3
[attachment=1550]



courtesy
101seminarstopics.com
Reply
#4
I WANT LANDMINE DETECTION USING IMPULSE GROUND PENETRATING RADAR AS A PPT FILE
Reply
#5
Sorry,
nobody has uploaded a ppt on this topic. We will upload as soon as it is available.
Reply
#6
i want landmine detection using impulse ground penetrating radar seminar as ppt file
Reply
#7
i want ppt presentation on landmine detecting radar
Reply
#8
please read http://studentbank.in/report-landmine-de...adar--5548 and http://studentbank.in/report-landmine-de...adar--8142 for getting more information about landmine detection using impulse ground penetrating radar
Reply
#9
Rainbow 
i want ppt of Landmine detection using impulse ground penetrating radarExclamationExclamation
Reply
#10
Hi, this page link has the ppt of this topic: "Landmine detection using impulse ground penetrating radar"

http://scribddoc/31356786/Landmine-Detection-Using-Impluse-Ground-Penetrating-Radar-PPT-Sharath
Reply
#11
[attachment=4400]

Landmines and unexploded ordnance (UXO)



abstract:-

Landmines and unexploded ordnance (UXO) are a legacy of war,
insurrection, and guerilla activity. Landmines kill and maim approximately
26,000 people annually. In Cambodia, whole areas of arable land cannot be
farmed due to the threat of landmines. United Nations relief operations are
made more difficult and dangerous due to the mining of roads. Current
demining techniques are heavily reliant on metal detectors and prodders.
Reply
#12

[attachment=4960]
Landmines and unexploded ordnance (UXO)

INTRODUCTION

Landmines and unexploded ordnance (UXO) are a legacy of war,
insurrection, and guerilla activity. Landmines kill and maim approximately
26,000 people annually. In Cambodia, whole areas of arable land cannot be
farmed due to the threat of landmines. United Nations relief operations are
made more difficult and dangerous due to the mining of roads. Current
demining techniques are heavily reliant on metal detectors and prodders.
Reply
#13
[attachment=6269]

LAND MINE DETECTION IN BARE SOILS
USING THERMAL INFRARED SENSORS


Sung-ho Hong, Timothy W. Miller, Brian Borchers, and Jan M.H. Hendrickx
New Mexico Tech, Socorro NM 87801

Henk A. Lensen, Piet B.W. Schwering and Sebastiaan P. van den Broek
TNO Physics and Electronics Laboratory, The Hague, The Netherlands.




ABSTRACT

Soil surface temperatures not only exhibit daily and annual cycles but also are very variable in space and time. Without knowledge of the spatial and temporal variability of soil surface temperatures, it will be difficult to determine what times of day are most suitable for mine detection using Thermal Infra Red (TIR) technology. In this study we monitor the spatial and temporal variability of soil surface temperatures under a range of soil texture and soil moisture conditions on undisturbed plots and plots with a buried anti-tank mine in arid New Mexico. We also analyzed soil surface temperature measurements taken at the test facility for land mine detection systems at the TNO Physics and Electronics Laboratory under the temperate climatic conditions of The Netherlands. The measurements in both areas show a cyclic behavior of the thermal signatures of the mines during the day and night that can be predicted by physics of the mine-soil-sensor system. However, unexpected behavior of the thermal signatures in a silt loam demonstrated that prediction of thermal signatures of buried mines is not straightforward. Keywords: landmines, detection, thermal infrared, thermal signature, test facility. 1. INTRODUCTION Many sensors for landmine detection are affected by the water content, temperature, electrical conductivity and dielectric constant of the surrounding soil. The most important of these is soil water content since it directly influences the three other properties. Simunek et al. (2001) have conducted a modeling study to evaluate how soil texture and water affect the thermal signatures of land mines. They concluded that the maximum temperature difference between the soil surface above the mine and away from it, i.e. the strong thermal signature, depends in a complex manner on the thermal properties of the soil which depend on soil water and soil texture as well as the soil heat flux which changes with geographical location and time of the year. The strong thermal signature seems to appear in two six-hour intervals centered around 12:00 am and 12:00 pm but its exact time is very difficult to predict. To make matters worse, the weak thermal signatures frequently can also be found in these time intervals. Therefore, their modeling study indicates that the use of a single thermal sensor for instantaneous mine detection carries a high risk. On the other hand if a given area can be monitored constantly with a thermal sensor for twelve hours or longer a thermal signature may be detected if the signal to noise ratio of the mine-soil-sensor system allows so. Moreover, a thermal sensor can be useful in addition to other types of sensors like metal detector or ground penetrating radar in a multi-sensor fused mine detection system. DePersia et al. (1995) reported on thermal signatures in areas with land mines. Temperature differences between the soil surface above and away from the mine are attributed to differences in heat capacity between mine and soil as well as surface disturbance during mine burial. The major principle of thermal infrared (IR) sensors for mine detection is based on detecting localized temperature differences, apparent thermal contrast, introduced by the mines. The apparent thermal contrast also depends on background levels, and should be compared to the clutter contrast in order to derive the probability of detection of objects.
Reply
#14
PRESENTED BY:-
MATRU PRASAD SWAIN

[attachment=12182]
INTRODUCTION
Landmines and unexploded ordnance (UXO) are a legacy of war , insurrection ,and guerilla activity. Landmines kill and maim approximately 26,000 people annually. In cambodia whole area of arable land cannot be farmed due to the threat of landmines .
UN relief operations are made more difficult and dangerous due the mining of roads.
Current demining techniques are heavily reliant in metal detectors and prodders.
Mine types
• ANTI-PERSONNEL – DESIGNED TO KILL OR MAIM DISMOUNTED TROOPS
• ANTI-TANK - DESIGNED TO DESTROY OR DISABLE TRACK OR WHEELED VEHICLES
• CHEMICAL - DESIGNED TO DISPENSE SMOKE, CS OR MORE DANGEROUS BIOLOGICAL OR CHEMICAL AGENTS
Four categories of innovative technology
1. Electromagnetic methods
2. Acoustic/seismic methods
3. Chemical vapor detection methods
4. Bulk explosives detection methods
X-RAY BACKSCATTER
When X-rays pass through matter they will be attenuated, i.e. absorbed or scattered. The probability of scattering in the back direction. This probability depends inversely on the absorption power of the material to the incident and to the backscattered x rays. Organic materials typically absorb only a small fraction of the x rays, so that the scatter probability is high. Metals typically are strongly absorbing, and the scatter probability is low. Thus, organic materials are bright and metallic objects are dark in the image
capabilities and advantages :
1 . The information depth is sufficient to detect all regularly placed mines.
2. XBT is able to detect metal-free landmines.

3 . landmines buried in a variety of soil conditions including various types of vegetation will be detected with XBT.
Reply
#15

to get information about the topic landmine detection using impulse ground penetrating radar full report ,ppt and related topic refer the page link bellow

http://studentbank.in/report-landmine-de...adar--5548

http://studentbank.in/report-landmine-de...dar--24698

http://studentbank.in/report-landmine-de...ting-radar

http://studentbank.in/report-landmine-de...142?page=3

http://studentbank.in/report-landmine-de...142?page=4



Reply
#16
to get information about the topic Landmine Detection Using Impulse Ground Penetrating Radar full report ppt and related topic refer the page link bellow

http://studentbank.in/report-landmine-de...adar--5548

http://studentbank.in/report-seminars-re...ting-radar

http://studentbank.in/report-landmine-de...dar--24698

http://studentbank.in/report-landmine-de...ting-radar
Reply
#17
to get information about the topic "landmine detection using ground penetrating radar" full report ppt and related topic refer the page link bellow


http://studentbank.in/report-landmine-de...e=threaded

http://studentbank.in/report-landmine-de...adar--2286

http://studentbank.in/report-landmine-de...dar--24698

http://studentbank.in/report-landmine-de...e=threaded
Reply
#18
to get information about the topic Landmine Detection Using Impulse Ground Penetrating Radar full report ppt and related topic refer the page link bellow

http://studentbank.in/report-landmine-de...adar--5548

http://studentbank.in/report-seminars-re...ting-radar

http://studentbank.in/report-landmine-de...dar--24698

http://studentbank.in/report-landmine-de...ting-radar
Reply
#19
Hello sir/mam i need landmine detection matlab programs please help me, send my e-mail id
rrsk90[at]gmail.com
. thanking you
regards
R. Sathishkumar
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: hindi meaning of ground penetrating, landmine detection using impulse ground penetrating radar ppt, abstract of land mine detection using impulse ground penetrating radar, mine detecting ground penetrating radar, wikipedia abstract for landmine detection using impulse ground penetrating radar, landmine facts, seminar on fire behaviour of stee penetrating wall,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  ANN for misuse detection project topics 7 4,908 07-02-2017, 06:34 PM
Last Post: shabeer
  Adaptive Optics in Ground Based Telescopes computer science crazy 11 4,555 07-10-2014, 10:28 PM
Last Post: seminar report asees
  DETECTION OF LOST MOBILE USING SNIFFERS seminar class 66 34,338 01-08-2014, 09:47 PM
Last Post: seminar report asees
  Earthquake Detection Using FM Radio Aditi paliwal 4 4,407 07-03-2013, 11:14 AM
Last Post: Guest
  mobile fraud detection full report project topics 7 7,283 03-03-2013, 02:22 PM
Last Post: Guest
  Landmine Detection Using Impulse Ground Penetrating Radar jadunath murmu 15 9,834 04-02-2013, 02:54 PM
Last Post: seminar details
  Seminar on Active Microwave Radar computer girl 1 3,053 03-01-2013, 02:38 PM
Last Post: seminar details
  Landmine Detection Using Impulse Ground Penetrating Radar computer science crazy 1 1,935 17-12-2012, 02:48 PM
Last Post: seminar details
  Digital image watermarking capacity and detection error rate computer science crazy 1 2,534 20-10-2012, 01:27 PM
Last Post: seminar details
  Spectrum sensing based on energy detection smart paper boy 1 2,820 03-10-2012, 12:46 PM
Last Post: seminar details

Forum Jump: