High-availability power systems: Redundancy options
#1
Music 

High-availability power systems: Redundancy options

In major applications like major computer installations, process control in chemical plants, safety monitors, IC units of hospitals etc., even a temporary power failure may lead to large economic losses. For such critical loads, it is of paramount importance to use UPS systems.

But all UPS equipments should be completely de-energized for preventive maintenance at least once per year. This limits the availability of the power system. Now there are new UPS systems in the market to permit concurrent maintenance.

High-Availability Power Systems

The computing industry talks in terms of "Nines" of availability. This refers to the percentage of time in a year that a system is functional and available to do productive work. A system with four "Nines" is 99.99 percent available, meaning that downtime is less than 53 minutes in a standard 365-day year. Five "Nines" (99.999 percent available) equates to less than 5.3 minutes of downtime per year. Six "Nines" (99.9999 percent available) equates to just 32 seconds of downtime per year. These same numbers apply when we speak of availability of conditioned power. The goal is to maximize the availability of conditioned power and minimize exposure to unconditioned utility power. The concept of continuous availability of conditioned power, takes this concept one step further. After all, 100 percent is greater than 99.99999 percent.

The Road To Continuous Availability

We determine availability by studying four key elements:

o Reliability
The individual UPS modules, static transfer switches and other power distribution equipment must be incredibly reliable, as measured by field-documented MTBF (Mean Time Between Failures). In addition, the system elements must be designed and assembled in a way that minimizes the complexity and single points of failure.

o Functionality
The UPS must be able to protect the critical load from the full range of power disturbances, and only a true double-conversion UPS can do this. Some vendors offer single- conversion (line-interactive) three-phase UPS products as a lower cost alternative. However, these alternative UPS's do not protect against all disturbances, including power system short circuits, frequency variations, harmonics and common mode noise. If your critical facility is truly critical, only a true double conversion UPS is suitable.

o Maintainability
The system design must permit concurrent maintenance of all power system components, supporting the load with part of the UPS system while other parts are being serviced. As we shall see, single bus solutions do not completely support concurrent maintenance.

o Fault Tolerance
The system must have fault resiliency to cope with a failure of any power system component without affecting the operation of the critical load equipment. Furthermore, the power distribution system must have fault resiliency to survive the inevitable load faults and human error.

The two factors of field-proven critical bus MTBF in excess of one million hours and double-conversion technology ensure reliability and functionality. With reliability and functionality assured, let us look at how different UPS system configurations compare for maintainability and fault tolerance.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: cyclic redundancy check ppt, high availability power systems redundancy options seminar report, reservation availability, high availability power system ppt, cyclic redundancy ppt 2010 ppt** source code pdf, online wedding tracker application for a marriage from a to z options, high availability,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  Wireless Power Transmission via Solar Power Satellite full report project topics 32 50,219 30-03-2016, 03:27 PM
Last Post: dhanabhagya
  UNINTERRUPTIBLE POWER SUPPLIES ppt seminar surveyer 2 4,535 30-03-2015, 11:29 AM
Last Post: seminar report asees
  LOW POWER VLSI On CMOS full report project report tiger 15 22,195 09-12-2014, 06:31 PM
Last Post: seminar report asees
  BROADBAND OVER POWER LINE (BPL) seminar projects crazy 39 27,336 30-08-2014, 01:10 AM
Last Post: Guest
  ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC BASED POWER SYSTEM STABILIZER project topics 4 6,139 28-02-2014, 04:00 AM
Last Post: Guest
  MICROCONTROLLER BASED AUTOMATIC POWER FACTOR CONTROLLING SYSTEM projectsofme 2 5,591 20-07-2013, 10:39 AM
Last Post: Mitesh Diwakar
Information EMBEDDED SYSTEMS IN AUTOMOBILES seminar projects crazy 4 4,119 19-07-2013, 10:44 AM
Last Post: computer topic
  Low Power Wireless Sensor Network computer science crazy 4 5,737 30-04-2013, 10:04 AM
Last Post: computer topic
  Automatic Power Factor Control seminar class 4 4,691 25-01-2013, 11:38 AM
Last Post: seminar details
  Embedded Systems In Automobiles computer science crazy 5 6,009 23-01-2013, 09:13 PM
Last Post: Guest

Forum Jump: