full seminars report in zettabyte file system
#1

sir,
I'm Akhilesh.S and I'm a diploma student in computer engineering. I'm intrested in the topic "Zettabyte File System" and I would like to take it as my seminar topic.so please kindly send me the full seminar report on Zettabyte File System.[/b][/color][/size][/font]
Reply
#2

full seminar report in zettabyte file system

Abstract of Zettabyte FileSystem

ZFS (Zettabyte FileSystem) is a file system designed by Sun Microsystems for the Solaris Operating System. ZFS is a 128-bit file system, so it can address 18 billion billion times more data than the 64-bit systems ZFS is implemented as open-source filesystem, licensed under the Common Development and Distribution License (CDDL). The features of ZFS include support for high storage capacities, integration of the concepts of file system and volume management, snapshots and copy-on-write clones, continuous integrity checking and automatic repair, RAID-Z etc. Additionally, Solaris ZFS implements intelligent prefetch, performing read ahead for sequential data streaming, and can adapt its read behavior on the fly for more complex access patterns. To eliminate bottlenecks and increase the speed of both reads and writes, ZFS stripes data across all available storage devices, balancing I/O and maximizing throughput. And, as disks are added to the storage pool, Solaris ZFS immediately begins to allocate blocks from those devices, increasing effective bandwidth as each device is added. This means system administrators no longer need to monitor storage devices to see if they are causing I/O bottlenecks.
Introduction of Zettabyte FileSystem

Anyone who has ever lost important files, run out of space on a partition, spent weekends adding new storage to servers, tried to grow or shrink a file system, or experienced data corruption knows that there is room for improvement in file systems and volume managers. Solaris ZFS is designed from the ground up to meet the emerging needs of a general purpose local file system that spans the desktop to the data center. Solaris ZFS offers a dramatic advance in data management with an innovative approach to data integrity, near zero administration, and a welcome integration of file system and volume management capabilities.

The centerpiece of this new architecture is the concept of a virtual storage pool which decouples the file system from physical storage in the same way that virtual memory abstracts the address space from physical memory, allowing for much more efficient use of storage devices. In Solaris ZFS, space is shared dynamically between multiple file systems from a single storage pool, and is parceled out of the pool as file systems request it. Physical storage can be added to or removed from storage pools dynamically, without interrupting services, providing new levels of flexibility, availability, and performance. And in terms of scalability, Solaris ZFS is a 128-bit file system. Its theoretical limits are truly mind-boggling — 2128 bytes of storage, and 264 for everything else such as file systems, snapshots, directory entries, devices, and more. And ZFS implements an improvement on RAID-5, RAID-Z, which uses parity, striping, and atomic operations to ensure reconstruction of corrupted data. It is ideally suited for managing industry standard storage servers like the Sun Fire 4500.

ZFS is more than just a file system. In addition to the traditional role of data storage, ZFS also includes advanced volume management that provides pooled storage through a collection of one or more devices. These pooled storage areas may be used for ZFS file systems or exported through a ZFS Emulated Volume (ZVOL) device to support traditional file systems such as UFS. ZFS uses the pooled storage concept which completely eliminates the antique notion of volumes. According to SUN, this feature does for storage what the VM did for the memory subsystem. In ZFS everything is transactional , i.e., this keeps the data always consistent on disk, removes almost all constraints on I/O order, and allows for huge performance gains.

Storage Pools:

Unlike traditional file systems, which reside on single devices and thus require a volume manager to use more than one device, ZFS file systems are built on top of virtual storage pools called zpools. A zpool is constructed of virtual devices (vdevs), which are themselves constructed of block devices: files, hard drive partitions, or entire drives, with the last being the recommended usage. Block devices within a vdev may be configured in different ways, depending on needs and space available: non-redundantly (similar to RAID 0), as a mirror (RAID 1) of two or more devices, as a RAID-Z group of three or more devices, or as a RAID-Z2 group of four or more devices. Besides standard storage, devices can be designated as volatile read cache (ARC), nonvolatile write cache, or as a spare disk for use only in the case of a failure. Finally, when mirroring, block devices can be grouped according to physical chassis, so that the file system can continue in the face of the failure of an entire chassis.

Storage pool composition is not limited to similar devices but can consist of ad-hoc, heterogeneous collections of devices, which ZFS seamlessly pools together, subsequently doling out space to diverse file systems as needed. Arbitrary storage device types can be added to existing pools to expand their size at any time. If high-speed solid-state drives (SSDs) are included in a pool, ZFS will transparently utilize the SSDs as cache within the pool, directing frequently used data to the fast SSDs and less-frequently used data to slower, less expensive mechanical disks. The storage capacity of all vdevs is available to all of the file system instances in the zpool. A quota can be set to limit the amount of space a file system instance can occupy, and a reservation can be set to guarantee that space will be available to a file system instance.

This arrangement of pool will eliminate bottlenecks and increase the speed of reads and writes, Solaris ZFS stripes data across all available storage devices, balancing I/O and maximizing throughput. And, as disks are added to the storage pool, Solaris ZFS immediately begins to allocate blocks from those devices, increasing effective bandwidth as each device is added. This means system administrators no longer need to monitor storage devices to see if they are causing I/O bottlenecks.

An advantage of copy-on-write is that when ZFS writes new data, the blocks containing the old data can be retained, allowing a snapshot version of the file system to be maintained. ZFS snapshots are created very quickly, since all the data composing the snapshot is already stored; they are also space efficient, since any unchanged data is shared among the file system and its snapshots.

Writeable snapshots ("clones") can also be created, resulting in two independent file systems that share a set of blocks. As changes are made to any of the clone file systems, new data blocks are created to reflect those changes, but any unchanged blocks continue to be shared, no matter how many clones exist.

What Is ZFS?
The ZFS file system is a revolutionary new file system that fundamentally changes the way file systems are administered, with features and benefits not found in any other file system available today. ZFS is robust, scalable, and easy to administer.

ZFS Pooled Storage
ZFS uses the concept of storage pools to manage physical storage. Historically, file systems were constructed on top of a single physical device. To address multiple devices and provide for data redundancy, the concept of a volume manager was introduced to provide a representation of a single device so that file systems would not need to be modified to take advantage of multiple devices. This design added another layer of complexity and ultimately prevented certain file system advances because the file system had no control over the physical placement of data on the virtualized volumes.

ZFS eliminates volume management altogether. Instead of forcing you to create virtualized volumes, ZFS aggregates devices into a storage pool. The storage pool describes the physical characteristics of the storage (device layout, data redundancy, and so on) and acts as an arbitrary data store from which file systems can be created. File systems are no longer constrained to individual devices, allowing them to share disk space with all file systems in the pool. You no longer need to predetermine the size of a file system, as file systems grow automatically within the disk space allocated to the storage pool. When new storage is added, all file systems within the pool can immediately use the additional disk space without additional work. In many ways, the storage pool works similarly to a virtual memory system: When a memory DIMM is added to a system, the operating system doesn't force you to run commands to configure the memory and assign it to individual processes. All processes on the system automatically use the additional memory.

Transactional Semantics
ZFS is a transactional file system, which means that the file system state is always consistent on disk. Traditional file systems overwrite data in place, which means that if the system loses power, for example, between the time a data block is allocated and when it is linked into a directory, the file system will be left in an inconsistent state. Historically, this problem was solved through the use of the fsck command. This command was responsible for reviewing and verifying the file system state, and attempting to repair any inconsistencies during the process. This problem of inconsistent file systems caused great pain to administrators, and the fsck command was never guaranteed to fix all possible problems. More recently, file systems have introduced the concept of journaling. The journaling process records actions in a separate journal, which can then be replayed safely if a system crash occurs. This process introduces unnecessary overhead because the data needs to be written twice, often resulting in a new set of problems, such as when the journal cannot be replayed properly.

With a transactional file system, data is managed using copy on write semantics. Data is never overwritten, and any sequence of operations is either entirely committed or entirely ignored. Thus, the file system can never be corrupted through accidental loss of power or a system crash. Although the most recently written pieces of data might be lost, the file system itself will always be consistent. In addition, synchronous data (written using the O_DSYNC flag) is always guaranteed to be written before returning, so it is never lost.

Checksums and Self-Healing Data
With ZFS, all data and metadata is verified using a user-selectable checksum algorithm. Traditional file systems that do provide checksum verification have performed it on a per-block basis, out of necessity due to the volume management layer and traditional file system design. The traditional design means that certain failures, such as writing a complete block to an incorrect location, can result in data that is incorrect but has no checksum errors. ZFS checksums are stored in a way such that these failures are detected and can be recovered from gracefully. All checksum verification and data recovery are performed at the file system layer, and are transparent to applications.

In addition, ZFS provides for self-healing data. ZFS supports storage pools with varying levels of data redundancy. When a bad data block is detected, ZFS fetches the correct data from another redundant copy and repairs the bad data, replacing it with the correct data.

Unparalleled Scalability
A key design element of the ZFS file system is scalability. The file system itself is 128 bit, allowing for 256 quadrillion zettabytes of storage. All metadata is allocated dynamically, so no need exists to preallocate inodes or otherwise limit the scalability of the file system when it is first created. All the algorithms have been written with scalability in mind. Directories can have up to 248 (256 trillion) entries, and no limit exists on the number of file systems or the number of files that can be contained within a file system.

ZFS Snapshots
A snapshot is a read-only copy of a file system or volume. Snapshots can be created quickly and easily. Initially, snapshots consume no additional disk space within the pool.

As data within the active dataset changes, the snapshot consumes disk space by continuing to reference the old data. As a result, the snapshot prevents the data from being freed back to the pool.

Simplified Administration
Most importantly, ZFS provides a greatly simplified administration model. Through the use of a hierarchical file system layout, property inheritance, and automatic management of mount points and NFS share semantics, ZFS makes it easy to create and manage file systems without requiring multiple commands or the editing configuration files. You can easily set quotas or reservations, turn compression on or off, or manage mount points for numerous file systems with a single command. You can examine or replace devices without learning a separate set of volume manager commands. You can send and receive file system snapshot streams.

ZFS manages file systems through a hierarchy that allows for this simplified management of properties such as quotas, reservations, compression, and mount points. In this model, file systems are the central point of control. File systems themselves are very cheap (equivalent to creating a new directory), so you are encouraged to create a file system for each user, project, workspace, and so on. This design enables you to define fine-grained management points.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: zettabyte file system ieee paper, zfs internals, defragment freenas, zettabyte file system seminar topic documentation download, seminar report of file system, zfs defrag, zfs btrfs,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  get full seminars report on corrosion resistant gear box 2 7,987 27-03-2023, 08:20 PM
Last Post: Ekanth Gowda A S
  drones seminars ppt 2 15,124 05-02-2019, 03:31 PM
Last Post:
  class 12 physics project on full wave rectifier 1 23,917 23-11-2018, 10:58 AM
Last Post:
  seminar topics on cfd ppt and full report pdf 1 22,252 02-05-2018, 06:48 PM
Last Post: hello990
  seminar report on 3d solar cells ppt paper presentation ppt seminars report on 3d solar cells ppt paper presentation ppt 5 43,204 15-04-2018, 08:39 AM
Last Post: Guest
  vehicle tracking system project report 3 10,016 07-04-2018, 09:25 PM
Last Post: Guest
  nuclear batteries full documentation report 2 4,726 04-04-2018, 01:51 AM
Last Post: Priya priya
  walk n charge seminars ppt 2 21,675 07-03-2018, 12:21 AM
Last Post: Chetan Hosur
  citizen card system full code download 2 4,777 19-02-2018, 02:30 PM
Last Post: [email protected]
  transparent electronics seminars report 4 21,561 15-02-2018, 11:28 AM
Last Post: Guest

Forum Jump: