FPGA in Space
#1

FPGA in Space

A quiet revolution is taking place. Over the past few years, the density of the average programmable logic device has begun to skyrocket. The maximum number of gates in an FPGA is currently around 500,000 and doubling every 18 months. Meanwhile, the price of these chips is dropping. What all of this means is that the price of an individual NAND or NOR is rapidly approaching zero! And the designers of embedded systems are taking note. Some system designers are buying processor cores and incorporating them into system-on-a-chip designs; others are eliminating the processor and software altogether, choosing an alternative hardware-only design.

As this trend continues, it becomes more difficult to separate hardware from software. After all, both hardware and software designers are now describing logic in high-level terms, albeit in different languages, and downloading the compiled result to a piece of silicon. Surely no one would claim that language choice alone marks a real distinction between the two fields. Turing's notion of machine-level equivalence and the existence of language-to-language translators have long ago taught us all that that kind of reasoning is foolish. There are even now products that allow designers to create their hardware designs in traditional programming languages like C. So language differences alone are not enough of a distinction.

Both hardware and software designs are compiled from a human-readable form into a machine-readable one. And both designs are ultimately loaded into some piece of silicon. Does it matter that one chip is a memory device and the other a piece of programmable logic? If not, how else can we distinguish hardware from software?

Regardless of where the line is drawn, there will continue to be engineers like you and me who cross the boundary in our work. So rather than try to nail down a precise boundary between hardware and software design, we must assume that there will be overlap in the two fields. And we must all learn about new things. Hardware designers must learn how to write better programs, and software developers must learn how to utilize programmable logic.

TYPES OF PROGRAMMABLE LOGIC

Many types of programmable logic are available. The current range of offerings includes everything from small devices capable of implementing only a handful of logic equations to huge FPGAs that can hold an entire processor core (plus peripherals!). In addition to this incredible difference in size there is also much variation in architecture. In this section, I'll introduce you to the most common types of programmable logic and highlight the most important features of each type.

PLDs

At the low end of the spectrum are the original Programmable Logic Devices (PLDs). These were the first chips that could be used to implement a flexible digital logic design in hardware. In other words, you could remove a couple of the 7400-series TTL parts (ANDs, ORs, and NOTs) from your board and replace them with a single PLD. Other names you might encounter for this class of device are Programmable Logic Array (PLA), Programmable Array Logic (PAL), and Generic Array Logic (GAL).
Reply
#2
plz provide me the ppt,doc,pdf of Field programmable gate array in outer space...its very urgent...

i had read all ur threads and posts...its really very awesome..
"Field programmable gate array in outer space"
Reply
#3

send me ppt and reportpls jhalamayur[at]gmail.com
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: ppt on fpga in outer space, fpga project, ppt and pdf of fpga in outer space, pdf fpga in space seminor topic, xilinx fpga, seminar topic on fpga in space, pdf fpga in outer space,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  FPGA-Based Embedded System Implementation of Finger Vein Biometrics seminar project explorer 3 4,449 20-06-2016, 05:09 PM
Last Post: computer science crazy
  Space Time Adaptive Processing computer science crazy 2 2,268 05-03-2013, 11:09 AM
Last Post: seminar details
  SPACE VECTOR MODULATION FOR TWO LEG INVERTERS seminar class 4 3,336 28-02-2013, 10:39 AM
Last Post: seminar details
  Free Space Laser Communications computer science crazy 1 2,380 19-11-2012, 02:27 PM
Last Post: seminar details
  Wireless Power Transmission Options for Space Solar Power seminar presentation 3 3,967 01-11-2012, 02:28 PM
Last Post: seminar details
Lightbulb space mouse (Download Full Report And Abstract) computer science crazy 46 36,301 07-03-2012, 10:22 AM
Last Post: seminar paper
  Optical Communications in Space computer science crazy 4 4,822 15-02-2012, 12:47 PM
Last Post: seminar paper
  Space Shuttles and its Advancements computer science crazy 1 1,690 14-02-2012, 10:27 AM
Last Post: seminar paper
  Space-time adaptive processing computer science crazy 2 1,990 11-02-2012, 09:58 AM
Last Post: seminar addict
  Space-Time Adaptive Processing: Fundamentals computer science crazy 2 2,720 11-02-2012, 09:58 AM
Last Post: seminar addict

Forum Jump: