DNA sequencing
#1

DNA sequencing

DNA sequencing includes several methods and technologies that are used for determining the order of the nucleotide bases—adenine, guanine, cytosine, and thymine—in a molecule of DNA.
Knowledge of DNA sequences has become indispensable for basic biological research, other research branches utilizing DNA sequencing, and in numerous applied fields such as diagnostic, biotechnology, forensic biology and biological systematics. The advent of DNA sequencing has significantly accelerated biological research and discovery. The rapid speed of sequencing attained with modern DNA sequencing technology has been instrumental in the sequencing of the human genome, in the Human Genome Project. Related projects, often by scientific collaboration across continents, have generated the complete DNA sequences of many animal, plant, and microbial genomes.
DNA sequencing is the process of determining the nucleotide order of a given DNA fragment. Thus far, most DNA sequencing has been performed using the chain termination method developed by Frederick Sanger. This technique uses sequence-specific termination of a DNA synthesis reaction using modified nucleotide substrates. However, new sequencing technologies such as Pyrosequencing
are gaining an increasing share of the sequencing market. More genome data is now being produced by pyrosequencing than Sanger DNA sequencing. Pyrosequencing has enabled rapid genome sequencing. Bacterial genomes can be sequenced in a single run with several X coverage with this technique. This technique was also used to sequence the genome of James Watson recently.
The sequence of DNA encodes the necessary information for living things to survive and reproduce. Determining the sequence is therefore useful in fundamental research into why and how organisms live, as well as in applied subjects. Because of the key nature of DNA to living things, knowledge of DNA sequence may come in useful in practically any biological research. For example, in medicine it can be used to identify, diagnose and potentially develop treatments for genetic diseases. Similarly, research into pathogens may lead to treatments for contagious diseases. Biotechnology is a burgeoning discipline, with the potential for many useful products and services.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: nucleotide, books to teach sequencing 4th, amplification free illumina sequencing, sequencing, next generation sequencing,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  DNA FINGERPRINTING technology seminar addict 1 2,939 19-11-2012, 01:42 PM
Last Post: seminar details
  DNA Computing project uploader 0 665 14-02-2012, 10:22 AM
Last Post: project uploader
  DNA-A212 / DNA-A213 ADSL 2+ Modem/Router smart paper boy 0 2,732 19-07-2011, 11:56 AM
Last Post: smart paper boy

Forum Jump: