cellular and mobile communication by bakshi pdf
#1

I need multiple access techniques noty by bakshi
Reply
#2

cellular and mobile communication by bakshi pdf

Cellular systems are widely used today and cellular technology needs to offer very efficient use of the available frequency spectrum. With billions of mobile phones in use around the globe today, it is necessary to re-use the available frequencies many times over without mutual interference of one cell phone to another. It is this concept of frequency re-use that is at the very heart of cellular technology. However the infrastructure technology needed to support it is not simple, and it required a significant investment to bring the first cellular networks on line.

Early schemes for radio telephones schemes used a single central transmitter to cover a wide area. These radio telephone systems suffered from the limited number of channels that were available. Often the waiting lists for connection were many times greater than the number of people that were actually connected. In view of these limitations this form of radio communications technology did not take off in a big way. Equipment was large and these radio communications systems were not convenient to use or carry around.


The need for a spectrum efficient system
To illustrate the need for efficient spectrum usage for a radio communications system, take the example where each user is allocated a channel. While more effective systems are now in use, the example will take the case of an analogue system. Each channel needs to have a bandwidth of around 25 kHz to enable sufficient audio quality to be carried as well as enabling there to be a guard band between adjacent signals to ensure there are no undue levels of interference. Using this concept it is only possible to accommodate 40 users in a frequency band 1 MHz wide. Even of 100 MHz were allocated to the system this would only enable 4000 users to have access to the system. Today cellular systems have millions of subscribers and therefore a far more efficient method of using the available spectrum is needed.


Cell system for frequency re-use
The method that is employed is to enable the frequencies to be re-used. Any radio transmitter will only have a certain coverage area. Beyond this the signal level will fall to a limited below which it cannot be used and will not cause significant interference to users associated with a different radio transmitter. This means that it is possible to re-use a channel once outside the range of the radio transmitter. The same is also true in the reverse direction for the receiver, where it will only be able to receive signals over a given range. In this way it is possible to arrange split up an area into several smaller regions, each covered by a different transmitter / receiver station.

These regions are conveniently known as cells, and give rise to the name of a "cellular" technology used today. Diagrammatically these cells are often shown as hexagonal shapes that conveniently fit together. In reality this is not the case. They have irregular boundaries because of the terrain over which they travel. Hills, buildings and other objects all cause the signal to be attenuated and diminish differently in each direction.

It is also very difficult to define the exact edge of a cell. The signal strength gradually reduces and towards the edge of the cell performance will fall. As the mobiles themselves will have different levels of sensitivity, this adds a further greying of the edge of the cell. Therefore it is never possible to have a sharp cut-off between cells. In some areas they may overlap, whereas in others there will be a "hole" in coverage.


Cell clusters
When devising the infrastructure technology of a cellular system, the interference between adjacent channels is reduced by allocating different frequency bands or channels to adjacent cells so that their coverage can overlap slightly without causing interference. In this way cells can be grouped together in what is termed a cluster.

Often these clusters contain seven cells, but other configurations are also possible. Seven is a convenient number, but there are a number of conflicting requirements that need to be balanced when choosing the number of cells in a cluster for a cellular system:

Limiting interference levels
Number of channels that can be allocated to each cell site
It is necessary to limit the interference between cells having the same frequency. The topology of the cell configuration has a large impact on this. The larger the number of cells in the cluster, the greater the distance between cells sharing the same frequencies.

In the ideal world it might be good to choose a large number of cells to be in each cluster. Unfortunately there are only a limited number of channels available. This means that the larger the number of cells in a cluster, the smaller the number available to each cell, and this reduces the capacity.

This means that there is a balance that needs to be made between the number of cells in a cluster, and the interference levels, and the capacity that is required.


Cell size
Even though the number of cells in a cluster in a cellular system can help govern the number of users that can be accommodated, by making all the cells smaller it is possible to increase the overall capacity of the cellular system. However a greater number of transmitter receiver or base stations are required if cells are made smaller and this increases the cost to the operator. Accordingly in areas where there are more users, small low power base stations are installed.

The different types of cells are given different names according to their size and function:

Macro cells: Macro cells are large cells that are usually used for remote or sparsely populated areas. These may be 10 km or possibly more in diameter.
Micro cells: Micro cells are those that are normally found in densely populated areas which may have a diameter of around 1 km.
Pico cells: Picocells are generally used for covering very small areas such as particular areas of buildings, or possibly tunnels where coverage from a larger cell in the cellular system is not possible. Obviously for the small cells, the power levels used by the base stations are much lower and the antennas are not position to cover wide areas. In this way the coverage is minimised and the interference to adjacent cells is reduced.
Selective cells: Sometimes cells termed selective cells may be used where full 360 degree coverage is not required. They may be used to fill in a hole in the coverage in the cellular system, or to address a problem such as the entrance to a tunnel etc.
Umbrella cells: Another type of cells known as an umbrella cell is sometimes used in instances such as those where a heavily used road crosses an area where there are microcells. Under normal circumstances this would result in a large number of handovers as people driving along the road would quickly cross the microcells. An umbrella cell would take in the coverage of the microcells (but use different channels to those allocated to the microcells). However it would enable those people moving along the road to be handled by the umbrella cell and experience fewer handovers than if they had to pass from one microcell to the next.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Tagged Pages: telephone systems by bakshi,
Popular Searches: cellular and mobile communication by bakshi pdf, cellular and mobile communication by bakshi free download, optical communication pdf author by bakshi, notes of cellular mobile communication, cellular and mobile communication notes, seminar reportys on cellular manufracturing pdf, cellular and mobile communication by bakshi,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  pdf k53 learners test questions and answers 2015 pdf 2 11,075 18-05-2018, 06:21 PM
Last Post: Guest
  vlsi textbook pdf by bakshi free download 4 9,471 25-10-2017, 03:02 PM
Last Post: pinky
  hack import ethio telecom hidden mobile card 805 4 2,067 09-10-2017, 03:05 AM
Last Post: mesfin ashebar
  wireless communication notes by arun kumar pdf 2 1,352 11-06-2017, 11:50 AM
Last Post: mahantesh mm
  mobile tracking in android ppt 2 1,004 17-05-2017, 08:51 PM
Last Post: SANYAH
Thumbs Up online catering management system on php with report and source code and ppt 4 8,668 29-04-2017, 10:59 AM
Last Post: jaseela123d
  basic vlsi design by bakshi free download 3 1,198 28-04-2017, 11:23 AM
Last Post: jaseela123d
  MATLAB codes needed for powerline communication 1 7,949 12-04-2017, 05:00 PM
Last Post: jaseela123d
  cryptography and network security by atul kahate pdf torrent 2 2,516 16-08-2016, 12:08 PM
Last Post: Guest
Rainbow how to ethio telecom mobile card hack 2 1,352 05-08-2016, 09:24 AM
Last Post: seminar report asees

Forum Jump: