automatic toll gate system using rfid uml diagrams
#1

hi i am suhas i would like to get details on automatic toll gate system using rfid uml diagrams . i want the class diagram,use case diagram,sequence diagram,package diagram,activity diagram,component diagram and deployment diagram i need it plzz
Reply
#2
Electronic toll collection (ETC) aims to eliminate the delay on toll roads by collecting tolls electronically. ETC determines whether the cars passing are enrolled in the program, alerts enforcers for those that are not, and electronically debits the accounts of registered car owners without requiring them to stop.

In 1959, Nobel Economics Prize winner William Vickrey was the first to propose a system of electronic tolling for the Washington Metropolitan Area. He proposed that each car would be equipped with a transponder. “The transponder’s personalised signal would be picked up when the car passed through an intersection, and then relayed to a central computer which would calculate the charge according to the intersection and the time of day and add it to the car’s bill” Electronic toll collection has facilitated the concession to the private sector of the construction and operation of urban freeways, as well as made feasible the improvement and the practical implementation of road congestion pricing schemes in a limited number of urban areas to restrict auto travel in the most congested areas.

In the 1960s and 1970s, free flow tolling was tested with fixed transponders at the undersides of the vehicles and readers, which were located under the surface of the highway.

Norway has been the world's pioneer in the widespread implementation of this technology. ETC was first introduced in Bergen, in 1986, operating together with traditional tollbooths. In 1991, Trondheim introduced the world's first use of completely unaided full-speed electronic tolling. Norway now has 25 toll roads operating with electronic fee collection (EFC), as the Norwegian technology is called (see AutoPASS). In 1995, Portugal became the first country to apply a single, universal system to all tolls in the country, the Via Verde, which can also be used in parking lots and gas stations. The United States is another country with widespread use of ETC in several states, though many U.S. toll roads maintain the option of manual collection.

Cashless tolling is when cash tolls are not collected on the roadway. Electronic toll collection becomes the primary option for payment, with payment by mail as a secondary option. Open road tolling (ORT) is a type of electronic toll collection without the use of toll booths. The major advantage to ORT is that users are able to drive through the toll plaza at highway speeds without having to slow down to pay the toll.
In some urban settings, automated gates are in use in electronic-toll lanes, with 5 mph (8 km/h) legal limits on speed (and 2 to 3 times that as practical limits even with practice and extreme concentration)[clarification needed]; in other settings, 20 mph (35 km/h) legal limits are not uncommon. However, in other areas such as the Garden State Parkway in New Jersey, and at various locations in California, Florida, Pennsylvania, Delaware, and Texas, cars can travel through electronic lanes at full speed. Illinois' Open Road Tolling program features 274 contiguous miles of barrier-free roadways, where I-PASS or E-ZPass users continue to travel at highway speeds through toll plazas, while cash payers pull off the main roadway to pay at tollbooths. Currently over 80% of Illinois' 1.4 million daily drivers use an I-PASS.[citation needed]

Enforcement is accomplished by a combination of a camera which takes a picture of the car and a radio frequency keyed computer which searches for a drivers window/bumper mounted transponder to verify and collect payment. The system sends a notice and fine to cars that pass through without having an active account or paying a toll.

Factors hindering full-speed electronic collection include significant non-participation, entailing lines in manual lanes and disorderly traffic patterns as the electronic- and manual- collection cars "sort themselves out" into their respective lanes; problems with pursuing toll evaders; need, in at least some current (barrier) systems, to confine vehicles in lanes, while interacting with the collection devices, and the dangers of high-speed collisions with the confinement structures; vehicle hazards to toll employees present in some electronic-collection areas; the fact that in some areas at some times, long lines form even to pass through the electronic-collection lanes; and costs and other issues raised when retrofitting existing toll collection facilities. Unionized toll collectors can also be problematic.

Even if line lengths are the same in electronic lanes as in manual ones, electronic tolls save registered cars time: eliminating the stop at a window or toll machine, between successive cars passing the collection machine, means a fixed-length stretch of their journey past it is traveled at a higher average speed, and in a lower time. This is at least a psychological improvement, even if the length of the lines in automated lanes is sufficient to make the no-stop-to-pay savings insignificant compared to time still lost due waiting in line to pass the toll gate. Toll plazas are typically wider than the rest of the highway; reducing the need for them makes it possible to fit toll roads into tight corridors.

Despite these limitations, however, it is important to recognize that throughput increases if delay at the toll gate is reduced (i.e., if the tollbooth can serve more vehicles per hour). The greater the throughput of any toll lane, the fewer lanes required, so expensive construction can be deferred. Specifically, the toll-collecting authorities have incentives to resist pressure to limit the fraction of electronic lanes in order to limit the length of manual-lane lines. In the short term, the greater the fraction of automated lanes, the lower the cost of operation (once the capital costs of automating are amortized). In the long term, the greater the relative advantage that registering and turning one's vehicle into an electronic-toll one provides, the faster cars will be converted from manual-toll use to electronic-toll use, and therefore the fewer manual-toll cars will drag down average speed and thus capacity.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: toll gate lock system circuit, rfid based vehicle tracking automatic toll gate collection, automatic toll gate billing system with rfid ppt, vb based automatic toll system ppt, uml diagrams for electronic toll, diagrams for rfid project, pdf for toll gate system,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  AUTOMATIC TELLER MACHINE 0 802 05-02-2019, 03:14 PM
Last Post:
  project for nand gate class 12 0 692 28-10-2018, 07:57 AM
Last Post: Guest
  slide share ppt of artifical hand using embedded system 0 1,289 24-10-2018, 02:26 PM
Last Post: Guest
  project on door lock system using 8085 microcontroller 0 753 04-10-2018, 10:39 PM
Last Post: Guest
  literature review for automatic voltage changeover switch article 0 825 03-10-2018, 06:42 PM
Last Post: Guest
  how to apply for rfid card in tatasteel 0 7,286 03-10-2018, 10:09 AM
Last Post: Guest
  census management system using vb net 0 922 30-09-2018, 05:03 AM
Last Post: Guest
  automatic mobile recharge station with ppt 0 640 20-09-2018, 12:27 PM
Last Post: Guest
  source code for automatic question paper generator system in vb net 1 988 20-08-2018, 09:59 PM
Last Post: BP170512
  toll plaza management system in visual basic with source code 0 638 14-08-2018, 02:36 PM
Last Post: Guest

Forum Jump: