APPLICATION OF SUPERCONDUCTIVITY IN ELECTRIC POWER SYSTEM
#2

SUBMITTED BY:
SUNIL KUMAR MEENA

[attachment=10718]
INTRODUCTION Superconductors materials that have no resistance to the flow of electricity, are one of the last great frontiers of scientific discovery. Not only have the limits of superconductivity not yet been reached, but the theories that explain superconductor behavior seem to be constantly under review. In 1911 superconductivity was first observed in mercury by Dutch physicist Heike Kamerlingh Onnes of Leiden University (shown below ). When he cooled it to the temperature of liquid helium, 4 degrees Kelvin (-452F, -269C) , its resistance suddenly disappeared . The Kelvin scale represents an "absolute" scale of temperature. Thus, it was necessary for Onnes to come within 4 degrees of the coldest temperature that is theoretically attainable to witness the phenomenon of superconductivity. Later, in 1913 he won a Nobel Prize in physics for his research in this area.
The next great milestone in understanding how matter behaves at extreme cold temperatures occurred in 1933. German researchers Walther Meissner (above) and Robert Ochsenfeld (above) discovered that a superconducting material will repel a magnetic field (below fig.1). A magnet moving by a conductor induces currents in the conductor. This is the principle on which the electric generator operates. But, in a superconductor the induced currents exactly mirror the field that would have otherwise penetrated the superconducting material - causing the magnet to be repulsed. This phenomenon is known as strong diamagnetism and is today often referred to as the "Meissner effect" (an eponym). The Meissner effect is so strong that a magnet can actually be levitated over a superconductive material.
In subsequent decades other superconducting metals, alloys and compounds were discovered. In 1941 niobium-nitride was found to super conduct at 16 K. In 1953 vanadium-silicon displayed superconductive properties at 17.5 K. And, in 1962 scientists at Westinghouse developed the first commercial superconducting wire, an alloy of niobium and titanium (NbTi). High-energy, particle-accelerator electromagnets made of copper-clad niobium-titanium were then developed in the 1960s at the Rutherford-Appleton Laboratory in the UK, and were first employed in a superconducting accelerator at the Fermilab Tevatronin in the US in 1997 .
The first widely-accepted theoretical understanding of superconductivity was advanced in 1957 by American physicists John Bardeen, Leon Cooper, and John Schrieffer . Their Theories of Superconductivity became know as the BCS theory - derived from the first letter of each man's last name - and won them a Nobel prize in 1972. The mathematically complex BCS theory explained superconductivity at temperatures close to absolute zero for elements and simple alloys. However, at higher temperatures and with different superconductor systems, the BCS theory has subsequently become inadequate to fully explain how superconductivity is occurring.
Another significant theoretical advancement came in 1962 when Brian D. Josephson , a graduate student at Cambridge University, predicted that electrical current would flow between two superconducting materials - even when they are separated by a non-superconductor or insulator. His prediction was later confirmed and won him a share of the 1973 Nobel Prize in Physics. This tunneling phenomenon is today known as the "Josephson effect" and has been applied to electronic devices such as the SQUID, an instrument capabable of detecting even the weakest magnetic fields(Below graphic).
The term Superconductivity is a phenomenon occurring in certain materials at extremely low temperatures, characterized by exactly zero electrical resistance and the exclusion of the interior magnetic field (the Meissner effect).
The electrical resistivity of a metallic conductor decreases gradually as the temperature is lowered. However, in ordinary conductors such as copper and silver, impurities and other defects impose a lower limit. Even near absolute zero a real sample of copper shows a non-zero resistance. The resistance of a superconductor, on the other hand, drops abruptly to zero when the material is cooled below its "critical temperature". An electrical current flowing in a loop of superconducting wire can persist indefinitely with no power source. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical phenomenon. It cannot be understood simply as the idealization of "perfect conductivity" in classical physics.
Superconductivity occurs in a wide variety of materials, including simple elements like tin and aluminium, various metallic alloys and some heavily-doped semiconductors. Superconductivity does not occur in noble metals like gold and silver, nor in most ferromagnetic metals.
In 1986 the discovery of a family of cuprate-perovskite ceramic materials known as high-temperature superconductors, with critical temperatures in excess of 90 Kelvin, spurred renewed interest and research in superconductivity for several reasons. As a topic of pure research, these materials represented a new phenomenon not explained by the current theory. And, because the superconducting state persists up to more manageable temperatures (past the economically-important boiling point of liquid nitrogen), more commercial applications are feasible, especially if materials with even higher critical temperatures could be discovered.
BCS Theory: The first widely-accepted theory to explain superconductivity put forth in 1957 by John Bardeen, Leon Cooper, and John Schreiffer. The theory asserts that, as electrons pass through a crystal lattice, the lattice deforms inward towards the electrons generating sound packets known as "phonons". These phonons produce a trough of positive charge in the area of deformation that assists subsequent electrons in passing through the same region in a process known as phonon-mediated coupling. This is analogous to rolling a bowling ball up the middle of a bed. 2 people, one lying on each side of the bed, will tend to roll toward the center of the bed, once the ball has created a depression in the mattress. And, a 2nd bowling ball, placed at the foot of the bed, will now, quite easily, roll toward the middle
Josephson Effect: A phenomenon named for Cambridge graduate student Brian Josephson, who predicted that electrons would "tunnel" through a narrow (<10 angstroms) non-superconducting region, even in the absence of an external voltage. In a normal conductor, electrical current only flows when there's a voltage differential and contiguous electrical connection. It has been theorized that the Josephson Effect arises from the incoherent phase relationships between superconducting electrons in the two (separated) superconductors. The AC Josephson Effect is where the current flow oscillates as an external magnetic field impinged upon it increases beyond a critical value. [at a frequency of 2eV/h, where e is the electron charge, V is the voltage that appears, and h is Planck's constant]
EVOLUTION OF SUPERCONDUCTING TRANSITION TEMPERATURE:
1. Applications of Superconductivity

 Superconducting Magnets
 Power Transmission
 Transportation (MAGLEV Trains)
 Electric Motors
 SQUID Magnetometers
 Electronics
 Military applications
Superconducting Magnets
1.1. Superconducting Magnets
Type II superconductors such as niobium-tin and niobium-titanium are used to make the coil windings for superconducting magnets. These two materials can be fabricated into wires and can withstand high magnetic fields. Typical construction of the coils is to embed a large number of fine filaments ( 20 micrometers diameter) in a copper matrix. The solid copper gives mechanical stability and provides a path for the large currents in case the superconducting state is lost. These superconducting magnets must be cooled with liquid helium. Superconducting magnets can use solenoid geometries as do ordinary electromagnets.
Superconducting Magnet Wire of Niobium-Titanium
Ohanian's Physics has a photograph of a cross- section of copper wire of diameter 0.7 mm with 2100 filaments of niobium-titanium embedded in it. This is an approximate sketch of the geometry. Although copper is one of the best room- temperature conductors, it acts almost as an insulator between the strands.
Almost10% to 15% of generated electricity is dissipated in resistive losses in transmission lines, the prospect of zero loss superconducting transmission lines is appealing. In prototype superconducting transmission lines at Brookhaven National Laboratory, 1000 MW of power can be transported within an enclosure of diameter 40 cm. This amounts to transporting the entire output of a large power plant on one enclosed transmission line. This could be a fairly low voltage DC transmission compared to large transformer banks and multiple high voltage AC transmission lines on towers in the conventional systems. The superconductor used in these prototype applications is usually niobium-titanium, and liquid helium cooling is required.
Current experiments with power applications of high-temperature superconductors focus on uses of BSCCO in tape forms and YBCO in thin film forms. Current densities above 10,000 amperes persquare centimeter are considered necessary for practical power applications, and this threshold has been exceeded in several configurations.
1.2. Transportation (Maglev Trains)
Magnetic levitation transport, or maglev, is a form of transportation that suspends, guides and propels vehicles (especially trains) using electromagnetic force. This method is faster than wheeled mass transit systems, potentially reaching velocities comparable to turboprop and jet aircraft (900 km/h, 559 mph). These trains use superconducting magnets which allow for a larger gap, and repulsive-type Electro-Dynamic Suspension (EDS).
It is not practical to lay down superconducting rails, it is possible to construct a superconducting system onboard a train to repel conventional rails below it.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: suni leon nud imeg, the application of the superhydrophobicity, superconductivity information pdf in hindi, xenware application, electric winches, electric treffication, superconductivity pdf in hindi,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Messages In This Thread
RE: APPLICATION OF SUPERCONDUCTIVITY - by seminar class - 22-03-2011, 11:20 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Flying Windmills or Flying Electric Generator (FEG) technology project report helper 9 24,744 02-10-2018, 03:32 PM
Last Post: Guest
  FLYING WINDMILLS OR FLYING ELECTRIC GENERATOR (FEG) TECHNOLOGY seminarsense 4 20,738 02-10-2018, 01:23 AM
Last Post: [email protected]
  Electric field Optimization of High Voltage Electrode Based On Neural Networks computer science crazy 2 10,437 01-01-2018, 11:56 AM
Last Post: dhanabhagya
  Adaptive piezoelectric energy harvesting circuit for wireless remote power supply electronics seminars 3 4,604 18-02-2016, 02:18 PM
Last Post: seminar report asees
  Biomass Fuelled Power Plant computer science crazy 6 5,941 08-05-2015, 02:21 PM
Last Post: seminar report asees
  seminar on power grid 2 9,090 24-08-2014, 12:42 AM
Last Post: Guest
  artificial intelligence techniques in power systems full report computer science technology 3 5,735 08-08-2014, 10:39 PM
Last Post: seminar report asees
  thermoelectric power generation full report project report tiger 8 8,269 07-03-2014, 07:43 PM
Last Post: Guest
  Voltage Stability Improvement using Static Var Compensator in Power Systems project report tiger 4 13,704 12-07-2013, 11:29 AM
Last Post: computer topic
  GEOTHERMAL POWER GENERATING TECHNOLOGY project topics 11 9,594 25-06-2013, 10:00 AM
Last Post: computer topic

Forum Jump: