Spintronics
#1
Star 

Spintronics, or spin electronics, refers to the study of the role played by electron (and more generally nuclear) spin in solid state physics, and possible devices that specifically exploit spin properties instead of or in addition to charge degrees of freedom. For example, spin relaxation and spin transport in metals and semiconductors are of fundamental research interest not only for being basic solid state physics issues, but also for the already demonstrated potential these phenomena have in electronic technology (some short reviews). The prototype device that is already in use in industry as a read head and a memory-storage cell is the giant-magnetoresistive (GMR) sandwich structure which consists of alternating ferromagnetic and nonmagnetic metal layers. Depending on the relative orientation of the magnetizations in the magnetic layers, the device resistance changes from small (parallel magnetizations) to large (antiparallel magnetizations). This change in resistance (also called magnetoresistance) is used to sense changes in magnetic fields. Recent efforts in GMR technology have also involved magnetic tunnel junction devices where the tunneling current depends on spin orientations of the electrodes.

Current efforts in designing and manufacturing spintronic devices involve two different approaches. The first is perfecting the existing GMR-based technology by either developing new materials with larger spin polarization of electrons or making improvements or variations in the existing devices that allow for better spin filtering. The second effort, which is more radical, focuses on finding novel ways of both generation and utilization of spin-polarized currents. These include investigation of spin transport in semiconductors and looking for ways in which semiconductors can function as spin polarizers and spin valves. The importance of this effort lies in the fact that the existing metal-based devices do not amplify signals (although they are successful switches or valves), whereas semiconductor based spintronic devices could in principle provide amplification and serve, in general, as multi-functional devices. Perhaps even more importantly, it would be much easier for semiconductor-based devices to be integrated with traditional semiconductor technology.

While there are clear advantages for introducing semiconductors in novel spintronic applications, many basic questions pertaining to combining semiconductors with other materials to produce a viable spintronic technology remain open. For example, whether placing a semiconductor in contact with another material would impede spin transport across the interface is far from well-understood. In the past, one of the strategies to advance understanding of spin transport in hybrid semiconductor structures was to directly borrow knowledge obtained from studies of more traditional magnetic materials. However, there is also an alternative approach involving the direct investigation of spin transport in all-semiconductor device geometries. In such a scenario a combination of optical manipulation (for example, shining circularly polarized light to create net spin polarization) and material inhomogeneities (e.g. by suitable doping as in the recently discovered Ga1-xMnxAs type ferromagnetic materials where Mn impurities act as dopants) could be employed to tailor spin transport properties.

In addition to the near-term studies of various spin transistors and spin transport properties of semiconductors, a long-term and ambitious subfield of spintronics is the application of electron and nuclear spins to quantum information processing and quantum computation (for more information on quantum computation, check out the following site). It has long been pointed out that quantum mechanics may provide great advantages over classical physics in physical computation. However, the real boom started after the advent of Shor's factorization algorithm and quantum error correction schemes. Among the many quantum computer hardwares that were proposed are the ones based on electron and nuclear spins. Obviously, the spins of electrons and spin-1/2 nuclei provide perfect candidates for quantum bits (qubits) as their Hilbert spaces are generally well-defined and their decoherence relatively slow.

For More Read
link1
link2
link3
Reply
#2
i wants to know more about this seminar topic. pls help me
Reply
#3
The research field of Spintronics emerged from experiments on spin-dependent electron transport phenomena in solid-state devices done in the 1980s, including the observation of spin-polarized electron injection from a ferromagnetic metal to a normal metal by Er. Jiveshwar Sharma (Jove) and Johnson and Silsbee

read more from
http://en.wikipediawiki/Spintronics

http://googleurl?sa=t&source=web&cd=1&ve...%2Frmp.pdf&ei=vuKuTLyVBpGKvQOQu6HUBg&usg=AFQjCNF7_p1tWSiiNgRAlvVzFMeApY7LZw
Reply
#4
OVERVIEW

Electrons have a charge and a spin, but until recently, charges and spins have been considered separately. In conventional electronics, the charges are manipulated by electric fields but the spins are ignored. Other classical technologies, magnetic recording, for example, are using the spin but only through its macroscopic manifestation, the magnetization of a ferromagnet , This picture started to change in 1988 when the discovery of the giant magnetoresistance _GMR_ of the magnetic multilayers opened the way to an efficient control of the motion of the electrons by acting on their spin through the orientation of a magnetization. This rapidly triggered the development of a new field of research and technology, today called spintronics and, like the GMR, exploiting the influence of the spin on the mobility of the electrons in ferromagnetic materials. Actually, the influence of the spin on the mobility of the electrons in ferromagnetic metals, first suggested by Mott _1936_, had been experimentally demonstrated and theoretically described in my Ph.D. thesis almost 20 years before the discovery of 1988. The GMR was the first step on the road of the exploitation of this influence to control an electrical current. Its application to the read heads of hard disks greatly contributed to the fast rise in the density of stored information and led to the extension of the hard disk technology to consumerâ„¢s electronics. Then, the development of spintronics revealed many other phenomena related to the control and manipulation of spin currents. Today this field of research is expanding considerably, with very promising new axes like the phenomena of spin transfer, spintronics with semiconductors, molecular spintronics, or single-electron spintronics.


read more
http://rmp.apspdf/RMP/v80/i4/p1517_1
please read
http://studentbank.in/report-spintronics--984
http://studentbank.in/report-presentatio...ics-theory
http://studentbank.in/report-spintronics
http://studentbank.in/report-relativisti...ics-theory

for getting more about seminar information of spintronics theory
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: spintronics and nanotechnology, how does spintronics animation, semianr on spintronics, ntu mram spintronics, free download of full seminar report on spintronics, literature survey of spintronics, spintronics bbsr,

[-]
Quick Reply
Message
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  Spintronics computer science crazy 7 7,605 12-10-2012, 11:06 PM
Last Post: Guest

Forum Jump: